skip to main content
article

MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs

Published: 01 June 2003 Publication History

Abstract

MATCONT is a graphical MATLAB software package for the interactive numerical study of dynamical systems. It allows one to compute curves of equilibria, limit points, Hopf points, limit cycles, period doubling bifurcation points of limit cycles, and fold bifurcation points of limit cycles. All curves are computed by the same function that implements a prediction-correction continuation algorithm based on the Moore-Penrose matrix pseudo-inverse. The continuation of bifurcation points of equilibria and limit cycles is based on bordering methods and minimally extended systems. Hence no additional unknowns such as singular vectors and eigenvectors are used and no artificial sparsity in the systems is created. The sparsity of the discretized systems for the computation of limit cycles and their bifurcation points is exploited by using the standard Matlab sparse matrix methods. The MATLAB environment makes the standard MATLAB Ordinary Differential Equations (ODE) Suite interactively available and provides computational and visualization tools; it also eliminates the compilation stage and so makes installation straightforward. Compared to other packages such as AUTO and CONTENT, adding a new type of curves is easy in the MATLAB environment. We illustrate this by a detailed description of the limit point curve type.

References

[1]
Allgower, E. L. and Georg, K. 1996. Numerical path following. In Handbook of Numerical Analysis 5, P. G. Ciarlet and J. L. Lions, Eds. North-Holland, Amsterdam, The Neatherlands.
[2]
Arnold, D. and Polking, J. C. 1999. Ordinary Differential Equations using MATLAB, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ.
[3]
Ascher, U. M., Christiansen, J., and Russell, R. D. 1979. A collocation solver for mixed order systems of boundary value problems. Math. Comp. 33, 146, 659--679.
[4]
Back, A., Guckenheimer, J., Myers, M. R., Wicklin, F. J., and Worfolk, P. A. 1992. Dstool: Computer assisted exploration of dynamical systems. Notices Amer. Math. Soc. 39, April, 303--309.
[5]
Beyn, W.-J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Yu. A., and Sandstede, B. 2002. Numerical continuation, and computation of normal forms. In Handbook of Dynamical Systems, Vol. II, B. Fiedler, ed. Elsevier, Amsterdam, The Netherlands, 149--219.
[6]
Choe, W. G. and Guckenheimer, J. 2000. Using dynamical system tools in MATLAB. In Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, IMA Vol. 119, E. J. Doedel and L. S. Tuckerman, Eds. Springer, New York, NY. 85--113.
[7]
De Boor, C. and Swartz, B. 1973. Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 4, 582--606.
[8]
De Feo, O. 2000. MPLAUT: A MATLAB visualization software for AUTO97. EPFL, Lausanne, Switzerland. Available at http://www.math.uu.nl/people/kuznet/cm.
[9]
Dhooge, A., Govaerts, W., Kuznetsov, Yu. A., Mestrom, W., and Riet, A. 2000--2002. CL_MATCONT: A Continuation Toolbox in MATLAB. In Proceedings of the 2003 ACM Symposium on Applied Computing (Melbourne, FL), 161--166. Software available at: http://www.math.uu.nl/people/kuznet/cm.
[10]
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Sandstede, B., and Wang, X. J. 1997. AUTO97: Continuation and bifurcation software for ordinary differential equations (with HomCont), user's guide. Concordia University, Montreal, P.Q., Canada. Available at http://indy.cs.concordia.ca.
[11]
Doedel, E., Govaerts, W., and Kuznetsov, Yu. A. 2003. Computation of periodic solution bifurcations in ODEs using bordered systems. SIAM J. Numer. Anal. To appear.
[12]
Doedel, E. J., Keller, H. B., and Kernévez, J. P. 1991. Numerical analysis and control of bifurcation problems I : Bifurcation in finite dimensions. Int. J. Bifurc. Chaos 1, 3, 493--520.
[13]
Engelborghs, K., Luzyanina, T., and Roose, D. 2002. Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28, 1, 1--21.
[14]
Ermentrout, B. 2002. Simulating, Analyzing and Animating Dynamical Systems, a Guide to XPPAUT for Researchers and Students. SIAM Publications, Philadelphia, PA.
[15]
Govaerts, W., Kuznetsov, Yu. A., and Sijnave, B. 1998. Implementation of Hopf and double Hopf continuation using bordering methods. ACM Trans. Math. Softw. 24, 4, 418--436.
[16]
Govaerts, W. 2000. Numerical Methods for Bifurcations of Dynamical Equilibria. SIAM Publications, Philadelphia, PA.
[17]
Guckenheimer, J. and Holmes, P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences 42. Springer-Verlag, New York, NY.
[18]
Henderson, M. 2002. Multiple parameter continuation: Computing implicitly defined k-manifolds. Int. J. Bifurcation Chaos 12, 3 451--476.
[19]
Keller, H. B. 1977. Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory. Academic Press, New York, NY., 359--384.
[20]
Khibnik, A. I., Kuznetsov, Yu. A., Levitin, V. V., and Nikolaev, E. V. 1993. Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps. Physica D 62, 1--4, 360--371.
[21]
Kuznetsov, Yu. A. 1995/1998. Elements of Applied Bifurcation Theory, Applied Mathematical Sciences 112. Springer-Verlag, New York, NY.
[22]
Kuznetsov, Yu. A. and Levitin, V. V. 1995--1997. content: A multiplatform environment for analyzing dynamical systems. Dynamical Systems Laboratory, CWI, Amsterdam, The Netherlands. Available at ftp.cwi.nl/pub/CONTENT.
[23]
Mestrom, W. 2002. Continuation of limit cycles in MATLAB. Master's thesis. Mathematical Institute, Utrecht University, Utrecht, The Netherlands.
[24]
Polking, J. C. 1997--2003. dfield and pplane software. Available at http://math.rice.edu/∼dfield.
[25]
Riet, A. 2000. A continuation toolbox in MATLAB. Master's thesis. Mathematical Institute, Utrecht University, Utrecht, The Netherlands.
[26]
Russell, R. D. and Christiansen, J. 1978. Adaptive mesh selection strategies for solving boundary value problems. SIAM J. Numer. Anal. 15, 1, 59--80.
[27]
Shampine, L. F. and Reichelt, M. W. 1997. The MATLAB ODE suite. SIAM J. Sci. Compt. 18, 1, 1--22.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 29, Issue 2
June 2003
149 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/779359
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 June 2003
Published in TOMS Volume 29, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Dynamical system
  2. bifurcation
  3. numerical continuation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)313
  • Downloads (Last 6 weeks)31
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media