skip to main content
article

A survey of methods for recovering quadrics in triangle meshes

Published: 01 June 2002 Publication History

Abstract

In a variety of practical situations such as reverse engineering of boundary representation from depth maps of scanned objects, range data analysis, model-based recognition and algebraic surface design, there is a need to recover the shape of visible surfaces of a dense 3D point set. In particular, it is desirable to identify and fit simple surfaces of known type wherever these are in reasonable agreement with the data. We are interested in the class of quadric surfaces, that is, algebraic surfaces of degree 2, instances of which are the sphere, the cylinder and the cone. A comprehensive survey of the recent work in each subtask pertaining to the extraction of quadric surfaces from triangulations is presented.

References

[1]
Abdelmalek, N. 1990. Surface curvatures and 3D range images segmentation. Patt. Recog. 23, 8, 807--817.
[2]
Alboul, L. and van Damme, R. 1996. Polyhedral metrics in surface reconstruction. In The Mathematics of Surfaces VI, G. Mullineux, Ed. Oxford University Press, 171--200.
[3]
Alonso, L., Cuny, F., Petitjean, S., Paul, J.-C., Lazard, S., and Wies, E. 2001. The virtual mesh: A geometric abstraction for efficiently computing radiosity. ACM Trans. Graphics 20, 3, 169--201.
[4]
Angelopoulou, E. and Wölff, L. 1998. Sign of Gaussian curvature from curve orientation in photometric space. IEEE Trans. Patt. Anal. Mach. Int. 20, 10, 1056--1066.
[5]
Arman, F. and Aggarwal, J. 1993. Model-based object recognition in dense-range images---A review. ACM Comput. Surv. 25, 1, 5--43.
[6]
Bajaj, C., Ihm, I., and Warren, J. 1993. Higher-order interpolation and least-squares approximation using implicit algebraic surfaces. ACM Trans. Graphics 12, 4, 327--347.
[7]
Banegas, F., Michelucci, D., Roelens, M., and Jaeger, M. 1999. Automatic extraction of significant features from 3D point clouds by ellipsoidal skeleton. In Proceedings of International Conference on Visual Computing (Goa, India). 58--67.
[8]
Belyaev, A. and Ohtake, Y. 2000. An image Processings approach to detection of ridges and ravines on polygonal surfaces. In Proceedings of Eurographics. Short presentation.
[9]
Berkmann, J. and Caelli, T. 1994. Computation of surface geometry and segmentation using covariance techniques. IEEE Trans. Patt. Anal. Mach. Int. 16, 11, 1114--1116.
[10]
Besl, P. and Jain, A. 1986. Invariant surface characteristics for 3D object recognition in range images. Comput. Vis. Graph. Image Proc. 33, 33--80.
[11]
Besl, P. and Jain, A. 1988. Segmentation through variable-order surface fitting. IEEE Trans. Patt. Anal. Mach. Int. 10, 2, 167--192.
[12]
Björk, Å. 1996. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics.
[13]
Blinn, J. 1997. The algebraic properties of second-order surfaces. In Introduction to Implicit Surfaces, J. Bloomenthal, Ed. Morgan-Kaufmann, 52--97.
[14]
Bock, M. and Guerra, C. 1999. A geometric approach to the segmentation of range images. In Proceedings of 2nd International Conference on 3-D Imaging and Modeling (Ottawa, Ont., Canada). 261--269.
[15]
Boggs, P., Byrd, R., and Schnabel, R. 1987. A stable and efficient algorithm for non-linear orthogonal distance regression. SIAM J. Sci. Stat. Comput. 8, 6, 177--188.
[16]
Boissonnat, J.-D. and Cazals, F. 2000. Smooth surface reconstruction via natural neighbor interpolation of distance functions. In Proceedings of ACM Symposium on Computational Geometry. 223--232.
[17]
Bolle, R. and Cooper, D. 1986. On optimally combining pieces of information, with application to estimating 3-D complex-object position from range data. IEEE Trans. Patt. Anal. Mach. Int. 8, 5, 619--638.
[18]
Bolles, R. and Fischler, M. 1981. A RANSAC-based approach to model fitting and its application to finding cylinders in range data. In Proceedings of the International Joint Conference on Artificial Intelligence. 637--643.
[19]
Bookstein, F. 1979. Fitting conic sections to scattered data. Comput. Vis. Graph. Image Proc. 9, 56--71.
[20]
Boulanger, P. and Rioux, M. 1987. Segmentation of planar and quadric surfaces. In SPIE Proceedings, Advances in Intelligent Robotics Systems, (Boston, Mass.). 848--861.
[21]
Bourdet, P., Lartigue, C., and Leveaux, F. 1993. Effects of data point distribution and mathematical model on finding the best-fit sphere to data. Prec. Eng. 15, 3, 150--157.
[22]
Brady, M., Ponce, J., Yuille, A., and Asada, H. 1985. Describing surfaces. Comput. Vis. Graph. Image Proc. 32, 1--28.
[23]
Bricault, I. and Monga, O. 1997. From volume medical images to quadratic surface patches. Comput. Vis. Image Understand. 67, 1, 24--38.
[24]
Bruce, J., Giblin, P., and Tari, F. 1996. Ridges, crests and sub-parabolic lines of evolving surfaces. Int. J. Comput. Vis. 18, 3, 195--210.
[25]
Cai, L. 1989. A "small leakage" model for diffusion smoothing of image data. In Proceedings International Joint Conference on Artificial Intelligence. 1585--1590.
[26]
Cao, X. and Shrikhande, N. 1991. Quadric surface fitting for sparse range data. In Proceedings of the IEEE/SMC International Conference on Systems, Man and Cybernetics. 123--128.
[27]
Cao, X., Shrikhande, N., and Hu, G. 1994. Approximate orthogonal distance regression method for fitting quadric surfaces to range data. Patt. Rec. Lett. 15, 8, 781--796.
[28]
Chaine, R., Bouakaz, S., and Vandorpe, D. 1999. Extraction de descripteurs surfaciques pour la reconstruction 3D. Revue de CFAO et d'informatique graphique 14, 1, 93--107.
[29]
Chen, X. and Schmitt, F. 1992. Intrinsic surface properties from surface triangulation. In Proceedings European Conference on Computer Vision. 739--743.
[30]
Chivate, N., Goodall, C., and Jablokow, A. 1994. Comparative evaluation of surface fitting techniques for implicit surfaces. In Joint Statistical Meetings (Toronto, Ont., Canada).
[31]
Chivate, P. and Jablokow, A. 1993. Solid-model generation from measured point data. Comput. Aid. Des. 25, 9, 587--600.
[32]
Dai, M. and Newman, T. 1998. Hyperbolic and parabolic quadric surface fitting algorithms---Comparison between the least squares approach and the parameter optimization approach. Tech. Rep. TR-UAH-CS-1998-02, University of Alabama.
[33]
Dai, M. and Newman, T. 1999. Accurate reference surface recovery and defect detection for hyperboloid and paraboloid surfaces. In Proceedings 5th International Conference on Quality Control by Artificial Vision (Quebec, Canada). 165--170.
[34]
Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In SIGGRAPH 99 Conference Proceedings. Annual Conference Series. Addison Wesley, 317--324.
[35]
Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 2000. Discrete differential-geometry operators in nD. Preprint, The Caltech Multi-Res Modeling Group.
[36]
do Carmo, M. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, N.J.
[37]
Eggert, D., Fitzgibbon, A., and Fisher, R. 1998. Simultaneous registration of multiple range views for use in reverse engineering of CAD models. Comput. Vis. Image Understand. 69, 3, 253--272.
[38]
Fan, T., Medioni, G., and Nevatia, R. 1987. Segmented descriptions of 3D surfaces. IEEE J. Robot. Automat. 3, 6, 527--538.
[39]
Fan, T., Medioni, G., and Nevatia, R. 1989. Recognizing 3D objects using surface descriptions. IEEE Trans. Patt. Anal. Mach. Int. 11, 11, 1140--1157.
[40]
Faugeras, O. and Hebert, M. 1986. The representation, recognition, and locating of 3-D objects. The Int. J. Robot. Res. 5, 3, 27--51.
[41]
Faugeras, O., Hebert, M., and Pauchon, E. 1983. Segmentation of range data into planar and quadric patches. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 8--13.
[42]
Ferrie, F., Lagarde, J., and Whaite, P. 1993a. Darboux frames, snakes, and super-quadrics: geometry from the bottom up. IEEE Trans. Pat. Anal. Mach. Int. 15, 8, 771--784.
[43]
Ferrie, F., Mathur, S., and Soucy, G. 1993b. Feature extraction for 3-D model building and object recognition. In Three-Dimensional Object Recognition Systems, P. Flynn and A. Jain, Eds. Elsevier Press, 57--88.
[44]
Fisher, R., Fitzgibbon, A., and Eggert, D. 1997. Extracting surface patches from complete range descriptions. In Proceedings International Conference on Recent Advances in 3-D Imaging and Modeling. (Ottawa, Ont., Canada). 148--155.
[45]
Fitzgibbon, A., Eggert, D., and Fisher, R. 1997. High-level CAD model acquisition from range images. Comput. Aid. Des. 29, 4, 321--330.
[46]
Fitzgibbon, A. and Fisher, R. 1993. Invariant fitting for arbitrary single-extremum surfaces. In Proceedings British Machine Vision Conference (Surrey, England). 569--578.
[47]
Fitzgibbon, A., and Fisher, R. 1995. A buyer's guide to conic fitting. In Proceedings of the British Machine Vision Conference (Birmingham, England). 513--522.
[48]
Fitzgibbon, A., Pilu, M., and Fisher, R. 1999. Direct least squares fitting of ellipses. IEEE Trans. Patt. Anal. Mach. Int. 21, 5, 476--480.
[49]
Fletcher, R. 1987. Practical Methods of Optimization. John Wiley & Sons.
[50]
Flynn, P. and Jain, A. 1988. Surface classification: hypothesis testing and parameter estimation. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition. 261--267.
[51]
Flynn, P. and Jain, A. 1989. On reliable curvature estimation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition. 110--116.
[52]
Flynn, P. and Jain, A. 1991. CAD-based computer vision: from CAD models to relational graphs. IEEE Trans. Patt. Anal. Mach. Int. 13, 2, 114--132.
[53]
Foley, J., van Dam, A., Feiner, S., and Hughes, J. 1992. Computer Graphics, Principles and Practice. Addison-Wesley, Reading, Mass.
[54]
Gopi, M., Krishnan, S., and Silva, C. 2000. Surface reconstruction based on lower dimensional localized Delaunay triangulation. Comput. Graph. Forum 19, 3, 467--478. Proc. of Eurographics.
[55]
Gouraud, H. 1971. Continuous shading of curved surfaces. IEEE Trans. Computers 20, 6, 623--629.
[56]
Grimson, W., Lozano-Perez, T., Noble, N., and White, S. 1993. An automatic tube inspection system that finds cylinders in range data. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (New York, N.Y.), 446--452.
[57]
Hall, E., Tio, J., McPherson, C., and Sadjadi, F. 1982. Measuring curved surfaces for robot vision. IEEE Comput. 15, 12, 42--54.
[58]
Hamann, B. 1993. Curvature approximation for triangulated surfaces. Comput. Suppl. 8, 139--153.
[59]
Han, J., Volz, R., and Mudge, T. 1987. Range image segmentation and surface parameter extraction for 3D object recognition of industrial parts. In Proceedings of International Conference on Robotics and Automation. 1582--1589.
[60]
Hebert, M. and Ponce, J. 1982. A new method for segmenting 3D scenes into primitives. In Proceedings International Conference on Pattern Recognition. 836--838.
[61]
Heckbert, P. and Garland, M. 1999. Optimal triangulation and quadric-based surface simplification. J. Comput. Geom. Theory Appl. 14, 1--3, 49--65.
[62]
Hilton, A., Illingworth, J., and Windeatt, T. 1995. Statistics of surface curvature estimates. Patt. Rec. 28, 8, 1201--1221.
[63]
Hoffman, R., and Jain, A. 1987. Segmentation and classification of range images. IEEE Trans. Patt. Anal. Mach. Int. 9, 5, 608--620.
[64]
Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P., Bunke, H., Goldgof, D., Bowyer, K., Eggert, D., Fitzgibbon, A., and Fisher, R. 1996. An experimental comparison of range image segmentation algorithms. IEEE Trans. Patt. Anal. Mach. Int. 18, 7, 673--689.
[65]
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. 1992. Surface reconstruction from unorganized points. In SIGGRAPH 92 Conference Proceedings. Annual Conference Series. Addison-Wesley, 71--78.
[66]
Hoschek, J., Dietz, U., and Wilke, W. 1998. A geometric concept of reverse engineering of shape: approximation and feature lines. In Mathematical Methods for Curves and Surfaces II, M. Daehlen, T. Lyche, and L. Schumaker, Eds. Vanderbilt University Press, 253--262.
[67]
Jain, A. and Hoffman, R. 1988. Evidence-based recognition of 3D objects. IEEE Trans. Patt. Anal. Mach. Int. 10, 6, 783--802.
[68]
Jiang, X. and Bunke, H. 1999. Edge detection in range images based on scan line approximation. Comput. Vis. Image Understand. 73, 2, 183--199.
[69]
Jones, G. and Illingworth, J. 1994. Robust segmentation of curved surfaces from range data. In Proc. of, 7th International Conference on Progress in Image Analysis. 453--456.
[70]
Karbacher, S. and Häusler, G. 1998. A new approach for modeling and smoothing of scattered 3D data. In Three-Dimensional Image Capture and Applications, R. Ellson and J. Nurre, Eds. SPIE Proceedings, vol. 3313. The International Society for Optical Engineering, 168--177.
[71]
Karras, G. 1992. On the orientation of digital elevation models in biostereometrics. In Surface Topography and Spinal Deformity, A. Alberti, B. Drerup, and E. Hierholzer, Eds. G. Fischer Verlag, Stuttgart, 162--165.
[72]
Kobbelt, L. 1997. Discrete fairing. In The Mathematics of Surfaces VII, T. Goodman, Ed. Oxford University Press, 101--131.
[73]
Koenderink, J. 1990. Solid Shape. MIT Press, Cambridge, MA.
[74]
Kós, G., Martin, R., and Várady, T. 2000. Methods to recover constant radius rolling ball blends in reverse engineering. Comput. Aid. Geom. Des. 17, 127--160.
[75]
Köster, K. and Spann, M. 2000. MIR: An approach to robust clustering---Application to range image segmentation. IEEE Trans. Pat. Anal. Machine Int. 22, 5, 430--444.
[76]
Krsek, P., Lukács, G., and Martin, R. 1998. Algorithms for computing curvatures from range data. In The Mathematics of Surfaces VIII, R. Cripps, Ed. Information Geometers, 1--16.
[77]
Krsek, P., Pajdla, T., and Hlavac, V. 1997. Estimation of differential structures on triangulated surfaces. In Proc. of 21st Workshop of the Austrian Association for Pattern Recognition, R. Oldenbourg, Ed. 157--164.
[78]
Lagarde, J. 1997. Constraints and their satisfaction in the recovery of local surface structure. M.S. thesis, Department of Electrical Engineering, McGill University.
[79]
Lang, V., Belyaev, A., Bogaevski, I., and Kunii, T. 1997. Fast algorithms for ridge detection. In Proc. of International Conference on Shape Modeling and Applications, Japan.
[80]
Lee, C.-K., Haralick, R., and Deguchi, K. 1993. Estimation of curvature from sampled noisy data. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition, New York. 536--541.
[81]
Lee, K.-M., Meer, P., and Park, R.-H. 1998. Robust adaptive segmentation of range images. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 2, 200--205.
[82]
Lejeune, A. and Ferrie, F. 1996. Finding the parts of objects in range images. Comput. Vis. Image Understand. 64, 2, 230--247.
[83]
Lengagne, R., Fua, P., and Monga, O. 1996. Using crest lines to guide surface reconstruction from stereo. In Proc. of International Conference on Pattern Recognition. 9--13.
[84]
Leonardis, A., Gupta, A., and Bajcsy, R. 1995. Segmentation of range images as the search for geometric parametric models. Int. J. Comput. Vis. 14, 3, 253--277.
[85]
Liang, P. and Todhunter, J. 1990. Representation and recognition of surface shapes in range images: a differential geometric approach. Comput. Vis. Graphics Image Process. 52, 1, 78--109.
[86]
Lin, C. and Perry, M. 1982. Shape description using surface triangulation. In Proc. of IEEE Workshop on Comput. Vis. Represent. Control, Rindge, NH. 38--43.
[87]
López, A., Lumbreras, F., Serrat, J., and Villanueva, J. 1999. Evaluation of methods for ridge and valley detection. IEEE Trans. Patt. Anal. Mach. Int. 21, 4, 327--335.
[88]
Lukács, G. and Andor, L. 1998. Computing natural division lines on free-form surfaces based on measured data. In Mathematical Methods for Curves and Surfaces II, M. Daehlen, T. Lyche, and L. Schumaker, Eds. Vanderbilt University Press, 319--326.
[89]
Lukács, G., Martin, R., and Marshall, A. 1998. Faithful least-squares fitting of spheres, cylinders, cones and tori for reliable segmentation. In Proceedings of the European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 1406. Springer-Verlag, 671--686. Long version: Report GML 1997/5, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest.
[90]
Mangan, A. and Whitaker, R. 1999. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. and Comput. Graphics 5, 4, 308--321.
[91]
Martin, R. 1998. Estimation of principal curvatures from range data. Int. J. Shape Model. 4, 3,4, 99--109.
[92]
Mathur, S. and Ferrie, F. 1997. Edge localization in surface reconstruction using optimal estimation theory. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition. 833--838.
[93]
Max, N. 1999. Weights for computing vertex normals from facet normals. J. Graphics Tools 4, 2, 1--6.
[94]
McIvor, A. 1998. A cubic facet based method for estimating the principal quadric. In Proc. of Image and Vision Computing New Zealand, Auckland. 136--141.
[95]
McIvor, A. and Valkenburg, R. 1997. A comparison of local surface geometry estimation methods. Machine Vision and Applications 10, 1, 17--26. Long version: Industrial Research Limited Report 520, Auckland, New Zealand, March 1996.
[96]
McIvor, A. and Waltenberg, P. 1998. Recognition of simple curved surfaces from 3D surface data. In Proc. of Asian Conference on Computer Vision, Hong Kong. Vol. 1. 434--441. Long version: Industrial Research Limited Report 690, Auckland, New Zealand, March 1997.
[97]
Medioni, G. and Parvin, B. 1986. Segmentation of range images into planar surfaces by split and merge. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition. 415--417.
[98]
Meek, D. and Walton, D. 2000. On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Comput. Aid. Geom. Des. 17, 521--543.
[99]
Mencl, E. and Müller, H. 1998. Interpolation and approximation of surfaces from three-dimensional scattered data points. In State of the Art Reports, Eurographics'98. 51--67.
[100]
Miller, J. and Stewart, C. 1996. MUSE: robust surface fitting using unbiased scale estimates. In Proc. of IEEE Conference on Computer Vision and Pattern Recognition. 300--306.
[101]
Moore, D. and Warren, J. 1991. Approximation of dense scattered data using algebraic surfaces. In Proc. of IEEE Hawaiian International Conference on System Sciences. 681--690.
[102]
Muller, Y. and Mohr, R. 1984. Planes and quadrics detection using Hough transform. In Proc. of International Conference on Pattern Recognition, Montreal. Vol. 2. 1101--1103.
[103]
Newman, T., Flynn, P., and Jain, A. 1993. Model-based classification of quadric surfaces. Comput. Vis. Graph. Image Proc.: Image Understand. 58, 2, 235--249.
[104]
Nguyen, V.-D., Nzomigni, V., and Stewart, C. 1999. Fast and robust registration of 3D surfaces using low curvature patches. In Proc. of 2nd International Conference on 3-D Imaging and Modeling, (Ottawa, Ont., Canada). 201--208.
[105]
Nourse, B., Hakala, D., Hillyard, R., and Malraison, P. 1980. Natural quadrics in mechanical design. In Proc. of Autofact West (Anaheim, CA.), Vol. 1. 363--378.
[106]
Ohtake, Y., Belyaev, A., and Bogaevski, I. 2000. Polyhedral surface smoothing with simultaneous mesh regularization. In Proc. of International Conference on Geometric Modeling and Processing, Hong Kong. 229--237.
[107]
Ohtake, Y., Belyaev, A., and Bogaevski, I. 2001. Mesh regularization and adaptive smoothing. Comput. Aid. Design 33, 789--800.
[108]
Oshima, M. and Shirai, Y. 1983. Object recognition using three dimensional information. IEEE Trans. Patt. Anal. Mach. Int. 5, 4, 353--361.
[109]
Pennec, X., Ayache, N., and Thirion, J.-P. 2000. Landmark-based registration using features identified through differential geometry. In Handbook of Medical Imaging, I. Bankman, Ed. Academic Press.
[110]
Pinkall, U. and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Exper. Math. 2, 1, 15--36.
[111]
Ponce, J. and Brady, J. 1987. Toward a surface primal sketch. In Three-Dimensional Machine Vision, T. Kanade, Ed. Kluwer Publishers, 195--240.
[112]
Powell, M., Bowyer, K., Jiang, X., and Bunke, H. 1998. Comparing curved-surface range image segmenters. In Proc. of International Conference on Computer Vision. 286--291.
[113]
Pratt, V. 1987. Direct least-squares fitting of algebraic surfaces. In Computer Graphics (SIGGRAPH 87 Conference Proceedings). Addison Wesley, 27--31.
[114]
Press, W., Flannery, B., Tenkolsky, S., and Vetterling, W. 1988. Numerical Recipes in C, The Art of Scientific Computing. Cambridge University Press.
[115]
Requicha, A. and Voelcker, H. 1982. Solid modeling: a historical summary and contemporary assessment. IEEE Comput. Graph. Appl. 2, 1, 9--24.
[116]
Robertson, C., Fisher, R., Werghi, N., and Ashbrook, A. 1999. An improved algorithm to extract surfaces from complete range descriptions. In Proc. of WMC'99 (World Manufacturing Conference). 592--598.
[117]
Rosin, P. 1996. Analysing error of fit functions for ellipses. Patt. Rec. Lett. 17, 1461--1470.
[118]
Rössl, C., Kobbelt, L., and Seidel, H.-P. 2000. Extraction of feature lines on triangulated surfaces using morphological operators. In Proc. of Smart Graphics'00, AAAI Spring Symposium, Stanford University. 71--75.
[119]
Sacchi, R., Poliakoff, J., Thomas, P., and Häfele, K.-H. 1999. Curvature estimation for segmentation of triangulated surfaces. In Proc. of 2nd International Conference on 3-D Imaging and Modeling (Ottawa, Ont., Canada). 536--543.
[120]
Sachs, E., Roberts, A., and Stoops, D. 1991. 3-Draw: A tool for designing 3D shapes. IEEE Computer Graphics and Appl. 11, 6, 18--26.
[121]
Samson, P. and Mallet, J.-L. 1997. Curvature analysis of triangulated surfaces in structural geology. J. Math. Geol. 29, 3, 391--412.
[122]
Sander, P. and Zucker, S. 1990. Inferring surface trace and differential structure from 3-D images. IEEE Trans. Patt. Anal. Mach. Int. 12, 9, 833--854.
[123]
Sander, P. and Zucker, S. 1992. Singularities of principal direction fields from 3D images. IEEE Trans. Patt. Anal. Machine Intelligence 14, 3, 309--317.
[124]
Sanderson, A. 1996. Shape recovery of volume data with deformable B-spline models. Ph.D. dissertation, University of Utah.
[125]
Sapidis, N. and Besl, P. 1995. Direct construction of polynomial surfaces from dense range images through region growing. ACM Trans. Graphics 14, 2, 171--200.
[126]
Soucy, G. and Ferrie, F. 1997. Surface recovery from range images using curvature and motion consistency. Comput. Vis. Image Understand. 65, 1, 1--18.
[127]
Stokely, E. and Wu, S.-Y. 1992. Surface parameterization and curvature measurement of arbitrary 3-D objects. IEEE Trans. Patt. Anal. Mach. Int. 14, 8, 833--840.
[128]
Tang, C.-K. and Medioni, G. 1998. Inference of integrated surface, curve, and junction descriptions from sparse 3D data. IEEE Trans. Patt. Anal. Machine. Int. 20, 11, 1206--1223.
[129]
Tang, C.-K. and Medioni, G. 1999. Robust estimation of curvature information from noisy 3D data for shape description. In Proc. of International Conference on Computer Vision (Corfu, Greece). 426--433.
[130]
Taubin, G. 1991. Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Patt. Anal. Mach. Int. 13, 11, 1115--1138.
[131]
Taubin, G. 1993. An improved algorithm for algebraic curve and surface fitting. In Proc. of International Conference on Computer Vision. 658--665.
[132]
Taubin, G. 1995a. Curve and surface smoothing without shrinkage. In Proc. of International Conference on Computer Vision. 852--857.
[133]
Taubin, G. 1995b. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proc. of International Conference on Computer Vision. 902--907.
[134]
Taubin, G. 1995c. A signal processing approach to fair surface design. In SIGGRAPH 95 Conference Proceedings. Annual Conference Series. Addison Wesley, 351--358.
[135]
Taylor, R., Savini, M., and Reeves, A. 1989. Fast segmentation of range imagery into planar regions. Computer Vision, Graphics, and Image Processing: Image Understanding 45, 1, 42--60.
[136]
Thirion, J.-P. and Gourdon, A. 1995. Computing the differential characteristics of isointensity images. Computer Vision and Image Understanding 61, 2, 190--202.
[137]
Thompson, W., de St. Germain, J., Stark, S., and Henderson, T. 1999. Feature-based reverse engineering of mechanical parts. IEEE Trans. Robotics Automat. 15, 1, 57--66.
[138]
Thürmer, G. and Wüthrich, C. 1998. Computing vertex normals from polygonal facets. J. Graph. Tools 3, 1, 43--46.
[139]
Trucco, E. and Fisher, R. 1992. Computing surface-based representations from range images. In Proc. of IEEE International Symposium on Intelligent Control 275--280.
[140]
Trucco, E. and Fisher, R. 1995. Experiments in curvature-based segmentation of range data. IEEE Trans. Patt. Anal. Mach. Int. 17, 2, 177--182.
[141]
Várady, T., Kós, G., and Benkõ, P. 1998. Reverse engineering regular objects: simple segmentation and surface fitting procedures. Int. J. Shape Model. 4, 3 & 4, 127--142.
[142]
Várady, T., Martin, R., and Cox, J. 1997. Reverse engineering of geometric models---An introduction. Comput. Aid. Des. 29, 4, 255--269.
[143]
Watanabe, K. and Belyaev, A. 2000. Detection of curvature extrema on polygonal surfaces. In Proc. of International Conference on Human and Computer 11--14.
[144]
Welch, W. and Witkin, A. 1994. Free-form shape design using triangulated surfaces. In SIGGRAPH 94 Conference Proceedings. Annual Conference Series. Addison Wesley, 247--256.
[145]
Werghi, N., Fisher, R., Ashbrook, A., and Robertson, C. 1999. Object reconstruction by incorporating geometric constraints in reverse engineering. Comput. Aid. Des. 31, 6, 363--399.
[146]
Werghi, N., Fisher, R., and Robertson, C. 1998. Modelling objects having quadric surfaces incorporating geometric constraints. In Proc. of European Conference on Computer Vision. Vol. 2. 185--201.
[147]
Werghi, N., Fisher, R., Robertson, C., and Ashbrook, A. 2000. Faithful recovering of quadric surfaces from 3D range data by global fitting. Int. J. Shape Modell. 6, 1, 65--78.
[148]
Yang, M. and Lee, E. 1999. Segmentation of measured point data using a parametric quadric surface approximation. Comput. Aid. Des. 31, 7, 449--458.
[149]
Yokoya, Y. and Levine, M. 1989. Range image segmentation based on differential geometry: a hybrid approach. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 6, 643--649.
[150]
Yoshimi, T. and Tomita, F. 1994. Robust estimation for range image segmentation and reconstruction. In Proc. of IAPR Workshop on Machine Vision Applications (Kawasaki, Japan). 506--509.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 34, Issue 2
June 2002
141 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/508352
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 June 2002
Published in CSUR Volume 34, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Data fitting
  2. geometry enhancement
  3. local geometry estimation
  4. mesh fairing
  5. shape recovery

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)48
  • Downloads (Last 6 weeks)3
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media