skip to main content
article

Abstract computability and algebraic specification

Published: 01 April 2002 Publication History

Abstract

Abstract computable functions are defined by abstract finite deterministic algorithms on many-sorted algebras. We show that there exist finite universal algebraic specifications that specify uniquely (up to isomorphism) (i) all abstract computable functions on any many-sorted algebra; (ii) all functions effectively approximable by abstract computable functions on any metric algebra. We show that there exist universal algebraic specifications for all the classically computable functions on the set ℝ of real numbers. The algebraic specifications used are mainly bounded universal equations and conditional equations. We investigate the initial algebra semantics of these specifications, and derive situations where algebraic specifications precisely define the computable functions.

References

[1]
ARNOLD,A.AND NIVAT, M. 1980a. Metric interpretations of infinite trees and semantics of nondeterministic recursive programs. Theoretical Computer Science 11, 181-205.
[2]
ARNOLD,A.AND NIVAT, M. 1080b. The metric space of infinite trees, algebraic and topological properties. Fundamenta Informaticae 4, 445-476.
[3]
ARNOLD, V. I. 1973. Ordinary Differential Equations. MIT Press.
[4]
BLUM, L., CUCKER, F., SHUB, M., AND SMALE, S. 1996. Complexity and real computation: A manifesto. Int. J. Bifurc. Chaos 6, 1, 3-26.
[5]
BLUM, L., CUCKER, F., SHUB, M., AND SMALE, S. 1997. Complexity and Real Computation. Springer- Verlag.
[6]
BLANCK, J. 1997. Domain representability of metric spaces. Annals of Pure & Applied Logic 83, 225-247.
[7]
BRATTKA, V. 1997. Order-free recursion on the real numbers. Mathematical Logic Quarterly 43, 216-234.
[8]
BRATTKA, V. 1999. Recursive and computable operations over topological structures. Ph.D. dissertation, Fern Universitat Hagen, Fachbereich Informatik, Hagen, Germany, Informatik Berichte 255, Fern Universitat Hagen (July).
[9]
BLUM, L., SHUB, M., AND SMALE, S. 1989. On a theory of computation and complexity over the real numbers: np-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society 21, 1-46.
[10]
BERGSTRA,J.A.AND TUCKER, J. V. 1980a. A characterisation of computable data types by means of a finite equational specification method. In 7th J. W. de Bakker and J. van Leeuwen, editors, International Colloquium on Automata, Languages and Programming, Noordwijkerhout, The Netherlands (July), volume 85 of Lecture Notes in Computer Science, pages 76-90. Springer-Verlag.
[11]
BERGSTRA,J.A.AND TUCKER, J. V. 1980b. A natural data type with a finite equational final semantics specification but no effective equational initial semantics specification. Bulletin of the European Association for Theoretical Computer Science 11, 23-33.
[12]
BERGSTRA,J.A.AND TUCKER, J. V. 1982. The completeness of the algebraic specification methods for data types. Information & Control 54, 186-200.
[13]
BERGSTRA,J.A.AND TUCKER, J. V. 1983. Initial and final algebra semantics for data type specifications: two characterization theorems. SIAM J. Comput. 12, 336-387.
[14]
BERGSTRA,J.A.AND TUCKER, J. V. 1987. Algebraic specifications of computable and semicomputable data types. Theoretical Computer Science 50, 137-181.
[15]
BERGSTRA,J.A.AND TUCKER. J. V. 1995. Equational specifications, complete term rewriting and computable and semicomputable algebras. JACM 42, 1194-1230.
[16]
DE BAKKER,J.W.AND DE VINK, E. 1999. Control Flow Semantics. The MIT Press.
[17]
DE BAKKER,J.W.AND RUTTEN, J. J. M. M. 1992. Ten Years of Concurrency Semantics. World Scientific.
[18]
DE BAKKER,J.W.AND ZUCKER, J. I. 1982. Processes and the denotational semantics of concurrency. Information and Control 54, 70-120, 1982. Reprinted, with errata, in Studies in Concurrency Semantics: Selected Papers of the Amsterdam Concurrency Group, ed. J. W. de Bakker and J. J. M. M. Rutten, World Scientific Publishing Co. (1992), 28-80.
[19]
EDALAT, A. 1997. Domains for computation in mathematics, physics and exact real arithmetic. Bulletin of Symbolic Logic 3, 401-452.
[20]
EHRIG,H.AND MAHR, B. 1985. Fundamentals of Algebraic Specification 1, volume 6 of EATCS Monographs. Springer-Verlag.
[21]
ENGELER, E. 1993. Algebraic Properties of Structures. World Scientific Publishing Co.
[22]
GENTZEN, G. 1969. Investigations into logical deduction. In M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages 68-131. North Holland.
[23]
GUTTAG,J.V.AND HORNING, J. J. 1978. The algebraic specification of abstract data types. Acta Informatica 10, 27-52.
[24]
GARTNER,T.AND HOTZ, G. 2000. Recursive analytic functions of a complex variable. In Computability and Complexity in Analysis: 4th Workshop, Swansea, September 2000, pages 81-97. Technical Report 272-9/2000, FernUniversit~t Hagen.
[25]
GRZEGORCZYK, A. 1955. Computable functions. Fundamenta Mathematicae 42, 168-202.
[26]
GRZEGORCZYK, A. 1957. On the defintions of computable real continuous functions. Fundamental Mathematicae 44, 61-71.
[27]
KLEENE, S. C. 1952. Introduction to Metamathematics. North Holland.
[28]
LACOMBE, D. 1955. Extension de la notion de fonction recursive aux fonctions d'une ou plusieurs variables reelles, I, II, III. C.R. Acad. Sci. Paris 240, 2470-2480, 241, 13-14, 151- 153.
[29]
MAL'CEV, A. I. 1973. Algebraic Systems, volume 192 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag.
[30]
MESEGUER,J.AND GOGUEN, J. A. 1985. Initiality, induction and computability. In M. Nivat and J. Reynolds, editors, Algebraic Methods in Semantics, pages 459-541. Cambridge University Press.
[31]
MAHR,B.AND MAKOWSKY, J. A. 1984. Characterizing specification languages which admit initial semantics. Theoretical Computer Science 31, 49-59.
[32]
MOSCHOVAKIS, Y. N. 1964. Recursive metric spaces. Fundamenta Mathematicae 55, 215-238.
[33]
MEINKE,K.AND TUCKER, J. V. 1992. Universal algebra. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 1, pages 189-411. Oxford University Press.
[34]
NIVAT M. 1979. Infinite words, infinite trees, infinite computations. In J. W. de Bakker and J. van Leeuwen, editors, Foundations of Computer Science III, part 2: Languages, Logic, Semantics, volume 109 of Mathematical Centre Tracts, pages 3-52. Mathematical Centre, Amsterdam.
[35]
POUR-EL,M.B.AND RICHARDS, J. I. 1989. Computability in Analysis and Physics. Springer-Verlag.
[36]
STOLTENBERG-HANSEN, V., LINDSTR~M, I., AND GRIFFOR, E. 1994. Mathematical Theory of Domains. Cambridge University Press.
[37]
STOLTENBERG-HANSEN,V.AND TUCKER, J. V. 1988. Complete local rings as domains. J. Symb. Logic 53, 603-624.
[38]
STOLTENBERG-HANSEN,V.AND TUCKER, J. V. 1991. Algebraic and fixed point equations over inverse limits of algebras. Theoretical Computer Science 87, 1-24.
[39]
STOLTENBERG-HANSEN,V.AND TUCKER, J. V. 1993. Infinite systems of equations over inverse limits and infinite synchronous concurrent algorithms. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Semantics: Foundations and Applications, volume 666 of Lecture Notes in Computer Science, pages 531-562. Springer-Verlag.
[40]
STOLTENBERG-HANSEN,V.AND TUCKER, J. V. 1995. Effective algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pages 357-526. Oxford University Press.
[41]
STOLTENBERG-HANSEN,V.AND TUCKER, J. V. 1999. Concrete models of computation for topological algebras. Theoretical Computer Science 219, 347-378.
[42]
TAKEUTI, G. 1987. Proof Theory (2nd ed.). North Holland.
[43]
TUCKER, J. V. 1980. Computing in algebraic systems. In F. R. Drake and S. S. Wainer, editors, Recursion Theory, its Generalisations and Applications, volume 45 of London Mathematical Society Lecture Note Series, pages 215-235. Cambridge University Press.
[44]
TUCKER,J.V.AND ZUCKER, J. I. 1988. Program Correctness over Abstract Data Types, with Error- State Semantics, volume 6 of CWI Monographs. North Holland.
[45]
TUCKER,J.V.AND ZUCKER, J. I. 1991. Projections of semicomputable relations on abstract data types. Int. J. Found. Comput. Sci. 2, 267-296.
[46]
TUCKER,J.V.AND ZUCKER, J. I. 1992. Deterministic and nondeterministic computation, and horn programs, on abstract data types. J. Logic Prog. 13, 23-55.
[47]
TUCKER,J.V.AND ZUCKER, J. I. 1993. Provable computable selection functions on abstract structures. In P. Aczel, H. Simmons, and S. S. Wainer, editors, Proof Theory, pages 277-306. Cambridge University Press.
[48]
TUCKER,J.V.AND ZUCKER, J. I. 1999. Computation by 'while' programs on topological partial algebras. Theoretical Computer Science 219, 379-420.
[49]
TUCKER,J.V.AND ZUCKER, J. I. 2000. Computable functions and semicomputable sets on many-sorted algebras. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 5, pages 317-523. Oxford University Press.
[50]
TUCKER,J.V.AND ZUCKER, J. I. 2001. Abstract versus concrete models of computation on partial metric algebras. In preparation.
[51]
TUCKER,J.V.AND ZUCKER, J. I. 2001. Infinitary initial algebra specifications for stream algebras. In W. Sieg, R. Sommer, and C. Talcott, editors, Reflections: A Collection of Essays in Honor of Solomon Feferman. Association for Symbolic Logic.
[52]
WECHLER, W. 1992. Universal Algebra for Computer Scientists, volume 25 of EATCS Monographs. Springer-Verlag.
[53]
WEIHRAUCH, K. 2000. Computable Analysis: An Introduction. Springer-Verlag.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 3, Issue 2
April 2002
157 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/505372
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 April 2002
Published in TOCL Volume 3, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Abstract computability
  2. algebraic specification
  3. computable analysis
  4. conditional equations
  5. equational logic
  6. metric algebras
  7. topological algebras

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)1
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media