skip to main content
article
Free access

Automatic integration of a function with a parameter

Published: 01 November 1966 Publication History

Abstract

Two efficient methods for automatic numerical integration are Romberg integration and adaptive Simpson integration. For integrands of the form ƒ(x)g(x, α) where α is a parameter, it is shown that Romberg's method is more efficient. A FORTRAN program shows how to achieve this greater efficiency.

References

[1]
BAUER, F. L. Algorithm 60, Romberg integration. Comm. ACM 4 (1961), 255; see also Comm. ACM 5 (1962), 168, 281.
[2]
BAUER, F. L. La m6thode d'int6gration num4rique de Romberg. Colloque Bur l'analyse num4rique, 22-24 mars 1961 a Mons, 119-129.
[3]
BAUER, F. L., RUTISHAUSER, H., AND STIEFEL, E. New aspects in numerical quadrature. Proc. Symposia Appl. Math. Vol. 15, 1962, 199-218.
[4]
BAUMANN, R., FELICIANO, M., BAUER, F. L., AND SAMELSEN, K. Introduction to ALGOL. Prentice-Hall, Englewood Cliffs, N. J., 1964, 73.
[5]
BULIRSCH, R. Bemerkungen zur Romberg-Integration. Numer. Math. 6 (1964), 6-16.
[6]
BULIRSCH, R., AND STOER, J. Fehlerabschatzungen und Extrapolation mit rationalen Funktionen bei Verfahren yon Richardson-Typus. Numer. Math. 6 (1964), 413-427.
[7]
BULIRSCH, R., AND STOER, J. Asymptotic upper and lower bounds for results of extrapolation methods. Numer. Math. 8 (1966), 93-104.
[8]
DUNKL, C .F . Romberg quadrature to prescribed accuracy. SHARE File No. 7090-1481 TYQUAD.
[9]
ELLIOTT, J., AND PRAGER, W. Quadrature routine to evaluate fpQ F(u) du. Brown U. Computing Lab., Providence, R. I.
[10]
FILIPPI, S. Des Verfahren yon Romberg-Stiefel-Bauer als Spezialfall des allgemeinen Prinzips von Richardson. Mathematik-Technik-Wirtschaft 11 (1964), 49-54, 98-100.
[11]
GRAM, C. Definite integral by Romberg's method. ALGOL procedure. BIT $ (1964), 54-60; see also BIT 4 (1964), 118-120.
[12]
HAVIE, T. One modification of Romberg's algorithm. BIT 6 (1966), 24--30.
[13]
KRASUN, A. M., AND PRAGER, W. Remark on Romberg quadrature. Comm. ACM 8 (1965), 236-237.
[14]
KUBIK, R.N. Algorithm 257, Havie integrator. Comm. ACM 8 (1965), 381.
[15]
KUNCIR, G. F. Algorithm 103, Simpson's rule integration. Comm. ACM 5 (1962), 347.
[16]
McKEEMAN, W. M. Algorithm 145, adaptive numerical integration by Simpson's rule. Comm. ACM 5 (1962), 604; see also Comm. ACM 8 (1965), 171.
[17]
MCKEEMAN, W.M. Certification of algorithm 145, adaptive numerical integration by Simpson's rule. Comm. ACM 6 (1963), 167-168.
[18]
MCKEEMAN, W. M., AND TESLER, LARR:f. Algorithm 182, nonrecursive adaptive integration. Comm. ACM 6 (1963), 315; see also Comm. ACM 7 (1964), 244.
[19]
MCKEEMAN, W.M. Algorithm 198, adaptive integration and multiple integration. Comm. ACM 6 (1963), 443-444.
[20]
MEINGUET, J. Methods for estimating the remainder in linear rules of approximation: application to the Romberg algorithm. S6minaire de Math6matique Appliqu6e et Mecanique, Universit6 Catholique de Louvain, Rept. no. 5, 1966.
[21]
PRAGER, W. Introduction to Basic FORTRAN Programming and Numerical Methods. Blaisdell Publishers, New York, 1965, 123-124.
[22]
ROMBERG, W. Vereinfachte numerische Integration. Det. Kong. Norske Videnskab. Selskab Forhandlinger, 28, 7, 1955.
[23]
RUTISHAUSER, H. Ausdehnung des Rombergscher Prinzips. Numer. Math. g (1963), 48-54.
[24]
STIEFEL, E. Altes und Neues fiber numerische Quadratur. Z. Angew. Math. Mech. 41 (1961), 408-413.
[25]
STIEFEL, E., AND RUTISHAUSER, H. Remarques concernant l'intdgration numerique. Compt. Rend. Acad. Sci. Paris 252 (1961), 1899-1900.
[26]
STROUD, A.H. Error estimates for Romberg quadrature. J. SIAM Numer. Anal., Ser. B, P (1965), 480-488.
[27]
THACHER, JR., H. C. Remark on algorithm 60, Romberg integration. Comm. ACM 7 (1964), 420-421.

Cited By

View all
  1. Automatic integration of a function with a parameter

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Communications of the ACM
    Communications of the ACM  Volume 9, Issue 11
    Nov. 1966
    44 pages
    ISSN:0001-0782
    EISSN:1557-7317
    DOI:10.1145/365876
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 November 1966
    Published in CACM Volume 9, Issue 11

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)104
    • Downloads (Last 6 weeks)17
    Reflects downloads up to 28 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media