skip to main content
research-article
Open access

Lifting Directional Fields to Minimal Sections

Published: 19 July 2024 Publication History

Abstract

Directional fields, including unit vector, line, and cross fields, are essential tools in the geometry processing toolkit. The topology of directional fields is characterized by their singularities. While singularities play an important role in downstream applications such as meshing, existing methods for computing directional fields either require them to be specified in advance, ignore them altogether, or treat them as zeros of a relaxed field. While fields are ill-defined at their singularities, the graphs of directional fields with singularities are well-defined surfaces in a circle bundle. By lifting optimization of fields to optimization over their graphs, we can exploit a natural convex relaxation to a minimal section problem over the space of currents in the bundle. This relaxation treats singularities as first-class citizens, expressing the relationship between fields and singularities as an explicit boundary condition. As curvature frustrates finite element discretization of the bundle, we devise a hybrid spectral method for representing and optimizing minimal sections. Our method supports field optimization on both flat and curved domains and enables more precise control over singularity placement.

Supplementary Material

ZIP File (papers_767.zip)
supplemental

References

[1]
Afonso S Bandeira, Yutong Chen, Roy R Lederman, and Amit Singer. June 2020. "Non-unique games over compact groups and orientation estimation in cryo-EM." en. Inverse Problems, 36, 6, (June 2020), 064002.
[2]
Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas Guibas. Sept. 2010. "On Discrete Killing Vector Fields and Patterns on Surfaces." Computer Graphics Forum, 29, 5, (Sept. 2010), 1701--1711.
[3]
David Bommes, Henrik Zimmer, and Leif Kobbelt. July 2009. "Mixed-integer quadran-gulation." en. ACM Transactions on Graphics, 28, 3, (July 2009), 1--10.
[4]
David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt. 2013. "Integer-grid maps for reliable quad meshing." ACM Transactions on Graphics (TOG), 32, 4, 1--12.
[5]
Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011. "Distributed optimization and statistical learning via the alternating direction method of multipliers." Foundations and Trends® in Machine learning, 3, 1, 1--122.
[6]
Haim Brezis and Petru Mironescu. July 2019. "The Plateau problem from the perspective of optimal transport." en. Comptes Rendus Mathematique, 357, 7, (July 2019), 597--612.
[7]
Guy Bunin. Jan. 2008. "A continuum theory for unstructured mesh generation in two dimensions." en. Computer Aided Geometric Design, 25, 1, (Jan. 2008), 14--40.
[8]
Pablo M. Chacon and David L. Johnson. Feb. 2011. "Minimal surfaces in circle bundles over Riemann surfaces." Bulletin of the London Mathematical Society, 43, 1, (Feb. 2011), 33--43. arXiv:0806.1901 [math].
[9]
Nicolas Charon and Alain Trouvvé. 2014. "Functional Currents: a new mathematical tool to model and analyse functional shapes." Journal of Mathematical Imaging and Vision, 48, 3, 413--431.
[10]
Alexandre Chemin, François Henrotte, Jean-François Remacle, and Jean Van Schaftingen. Aug. 2018. "Representing three-dimensional cross fields using 4th order tensors." en. International Meshing Roundtable, (Aug. 2018). Retrieved Jan. 7, 2019 from http://arxiv.org/abs/1808.03999.
[11]
Lénaïc Chizat. Nov. 2020. "Sparse Optimization on Measures with Over-parameterized Gradient Descent." arXiv:1907.10300 [math, stat], (Nov. 2020). arXiv: 1907.10300. Retrieved Mar. 24, 2022 from http://arxiv.org/abs/1907.10300.
[12]
Etienne Corman and Keenan Crane. July 12, 2019. "Symmetric Moving Frames." ACM Transactions on Graphics, 38, 4, (July 12, 2019), 87:1--87:16.
[13]
Keenan Crane, Mathieu Desbrun, and Peter Schröder. July 1, 2010. "Trivial Connections on Discrete Surfaces." Computer Graphics Forum, 29, (July 1, 2010), 1525--1533.
[14]
Fernando de Goes, Mathieu Desbrun, and Yiying Tong. July 2016. "Vector field processing on triangle meshes." en. In: ACM SIGGRAPH 2016 Courses. ACM, Anaheim California, (July 2016), 1--49. isbn: 978-1-4503-4289-6.
[15]
Fernando de Goes and Keenan Crane. 2010. Trivial Connections on Discrete Surfaces Revisited: A Simplified Algorithm for Simply-Connected Surfaces. Technical Report.
[16]
Stanley Durrleman, Xavier Pennec, Alain Trouvé, Paul Thompson, and Nicholas Ayache. 2008. "Inferring brain variability from diffeomorphic deformations of currents: an integrative approach." Medical Image Analysis, 12, 5, 626--637.
[17]
Stanley Durrleman, Xavier Pennec, Alain Trouvé, and Nicholas Ayache. 2009. "Statistical models of sets of curves and surfaces based on currents." Medical Image Analysis, 13, 5, 793--808.
[18]
Stanley Durrleman, Pierre Fillard, Xavier Pennec, Alain Trouvé, and Nicholas Ayache. 2011. "Registration, Atlas Estimation and Variability Analysis of White Matter Fiber Bundles Modeled as Currents." NeuroImage, 55, 3, 1073--1090.
[19]
Nahum Farchi and Mirela Ben-Chen. Aug. 2018. "Integer-only cross field computation." en. ACM Transactions on Graphics, 37, 4, (Aug. 2018), 1--13.
[20]
Herbert Federer. 1974. "Real Flat Chains, Cochains and Variational Problems." Indiana University Mathematics Journal, 24, 4, 351--407. Publisher: Indiana University Mathematics Department. Retrieved May 16, 2023 from https://www.jstor.org/stable/24890827.
[21]
Herbert Federer. 1996. Geometric Measure Theory. Springer. isbn: 978-3-540-60656-7.
[22]
Joan Glaunes, Alain Trouvé, and Laurent Younes. 2004. "Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2. IEEE.
[23]
Michael Grant and Stephen Boyd. 2008. "Graph implementations for nonsmooth convex programs." In: Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences. Ed. by V. Blondel, S. Boyd, and H. Kimura. http://stanford.edu/~boyd/graph_dcp.html. Springer-Verlag Limited, 95--110.
[24]
Michael Grant and Stephen Boyd. Mar. 2014. CVX: Matlab Software for Disciplined Convex Programming, version 2.1. http://cvxr.com/cvx. (Mar. 2014).
[25]
Brook J. Hocking, Helen S. Ansell, Randall D. Kamien, and Thomas Machon. Feb. 2022. "The Topological Origin of the Peierls-Nabarro Barrier." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478, 2258, (Feb. 2022), 20210725. arXiv:2103.02055 [cond-mat, physics:math-ph].
[26]
Thomas Hudson. June 2018. An existence result for Discrete Dislocation Dynamics in three dimensions. en. arXiv:1806.00304 [math]. (June 2018). Retrieved June 1, 2023 from http://arxiv.org/abs/1806.00304.
[27]
Sharif Ibrahim, Bala Krishnamoorthy, and Kevin R. Vixie. May 2016. "Flat Norm Decomposition of Integral Currents." Journal of Computational Geometry, (May 2016), 285--307 Pages. arXiv:1411.0882 [cs, math].
[28]
Thomas A. Ivey and Joseph M. Landsberg. 2016. Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems. (Second edition ed.). Graduate Studies in Mathematics 175. American Mathematical Society, Providence, Rhode Island. 453 pp. isbn: 978-1-4704-0986-9.
[29]
David L. Johnson and Penelope Smith. 1995. "Regularity of volume-minimizing graphs." en. Indiana University Mathematics Journal, 44, 1.
[30]
David L. Johnson and Penelope Smith. July 2008. Partial regularity of mass-minimizing Cartesian currents. Tech. rep. arXiv:math/0403483. arXiv:math/0403483 type: article. arXiv, (July 2008). Retrieved July 2, 2022 from http://arxiv.org/abs/math/0403483.
[31]
Theodor Kaluza. 1921. "Zum Unitätsproblem Der Physik." Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1921, 966--972.
[32]
Oskar Klein. Dec. 1, 1926. "Quantentheorie und fünfdimensionale Relativitätstheorie." Zeitschrift für Physik, 37, 12, (Dec. 1, 1926), 895--906.
[33]
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. July 2013. "Globally optimal direction fields." ACM Transactions on Graphics, 32, 4, (July 2013), 59:1--59:10.
[34]
Urs Lang. Apr. 2004. Introduction to Geometric Measure Theory. (Apr. 2004).
[35]
Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. Aug. 2018. "Singularity-constrained octahedral fields for hexahedral meshing." en. ACM Transactions on Graphics, 37, 4, (Aug. 2018), 1--17.
[36]
Thomas Möllenhoff and Daniel Cremers. 2019a. "Flat metric minimization with applications in generative modeling." In: International Conference on Machine Learning. PMLR, 4626--4635.
[37]
Thomas Möllenhoff and Daniel Cremers. June 2019b. "Lifting Vectorial Variational Problems: A Natural Formulation Based on Geometric Measure Theory and Discrete Exterior Calculus." en. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Long Beach, CA, USA, (June 2019), 11109--11118. isbn: 978-1-72813-293-8.
[38]
MOSEK ApS. 2023. The MOSEK optimization toolbox for MATLAB manual. Version 10.1. https://docs.mosek.com/10.1/toolbox/index.html.
[39]
Michael Moshe, Eran Sharon, and Raz Kupferman. Dec. 2015. "Elastic interactions between two-dimensional geometric defects." en. Physical Review E, 92, 6, (Dec. 2015), 062403.
[40]
Ashish Myles and Denis Zorin. July 2013. "Controlled-distortion constrained global parametrization." en. ACM Transactions on Graphics, 32, 4, (July 2013), 1--14.
[41]
Ashish Myles, Nico Pietroni, and Denis Zorin. July 2014. "Robust Field-aligned Global Parametrization." ACM Trans. Graph., 33, 4, Article 135, (July 2014), 135:1--135:14.
[42]
Mikio Nakahara. June 4, 2003. Geometry, Topology and Physics, Second Edition. Taylor & Francis, (June 4, 2003). isbn: 978-0-7503-0606-5.
[43]
Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. Aug. 2011. "CubeCover-Parameterization of 3D Volumes." en. Computer Graphics Forum, 30, 5, (Aug. 2011), 1397--1406.
[44]
Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. Aug. 2019. "On bubble rings and ink chandeliers." en. ACM Transactions on Graphics, 38, 4, (Aug. 2019), 1--14.
[45]
David Palmer, David Bommes, and Justin Solomon. Apr. 2020. "Algebraic Representations for Volumetric Frame Fields." ACM Trans. Graph., 39, 2, Article Article 16, (Apr. 2020), 17 pages.
[46]
David Palmer, Dmitriy Smirnov, Stephanie Wang, Albert Chern, and Justin Solomon. 2022. "DeepCurrents: Learning Implicit Representations of Shapes with Boundaries." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18665--18675.
[47]
Emanuele Rodolà, Zorah Lähner, Alex M. Bronstein, Michael M. Bronstein, and Justin Solomon. 2019. "Functional Maps Representation On Product Manifolds." Computer Graphics Forum, 38, 1, 678--689.
[48]
Dylan Rowe and Albert Chern. Dec. 10, 2023. "Sparse Stress Structures from Optimal Geometric Measures." In: SIGGRAPH Asia 2023 Conference Papers. SA '23: SIGGRAPH Asia 2023. ACM, Sydney NSW Australia, (Dec. 10, 2023), 1--9. isbn: 979-8-40-070315-7.
[49]
Shigeo Sasaki. Jan. 1958. "On the differential geometry of tangent bundles of Riemannian manifolds." Tohoku Mathematical Journal, 10, 3, (Jan. 1958), 338--354. Publisher: Tohoku University, Mathematical Institute.
[50]
Riccardo Scala and Nicolas Van Goethem. Nov. 2016a. "Constraint reaction and the Peach-Koehler force for dislocation networks." en. Mathematics and Mechanics of Complex Systems, 4, 2, (Nov. 2016), 105--138.
[51]
Riccardo Scala and Nicolas Van Goethem. 2016b. "Currents and dislocations at the continuum scale." en. Methods and Applications of Analysis, 23, 1, 1--34.
[52]
Riccardo Scala and Nicolas Van Goethem. Feb. 2019. "Variational Evolution of Dislocations in Single Crystals." en. Journal of Nonlinear Science, 29, 1, (Feb. 2019), 319--344.
[53]
Riccardo Scala and Nicolas Van Goethem. Aug. 2020. "Analytic and geometric properties of dislocation singularities." en. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 150, 4, (Aug. 2020), 1609--1651.
[54]
Nicholas Sharp, Keenan Crane, et al. 2019. "GeometryCentral: A modern C++ library of data structures and algorithms for geometry processing."
[55]
Leon Simon. 2014. "Introduction to geometric measure theory." Tsinghua Lectures.
[56]
Yousuf Soliman, Dejan Slepčev, and Keenan Crane. Aug. 2018. "Optimal cone singularities for conformal flattening." en. ACM Transactions on Graphics, 37, 4, (Aug. 2018), 1--17.
[57]
Justin Solomon and Amir Vaxman. Aug. 2019. "Optimal transport-based polar interpolation of directional fields." en. ACM Transactions on Graphics, 38, 4, (Aug. 2019), 1--13.
[58]
Justin Solomon, Amir Vaxman, and David Bommes. May 2017. "Boundary Element Octahedral Fields in Volumes." en. ACM Transactions on Graphics, 36, 3, (May 2017), 1--16.
[59]
Oded Stein, Eitan Grinspun, Max Wardetzky, and Alec Jacobson. May 2018. "Natural Boundary Conditions for Smoothing in Geometry Processing." ACM Trans. Graph., 37, 2, Article Article 23, (May 2018), 13 pages.
[60]
Oded Stein, Eitan Grinspun, Alec Jacobson, and Max Wardetzky. 2019. "A mixed finite element method with piecewise linear elements for the biharmonic equation on surfaces." arXiv:1911.08029.
[61]
Marc Vaillant and Joan Glaunes. 2005. "Surface matching via currents." In: Biennial International Conference on Information Processing in Medical Imaging. Springer, 381--392.
[62]
Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. "Directional Field Synthesis, Design, and Processing." en. Computer Graphics Forum, 35, 2, 545--572.
[63]
Ryan Viertel and Braxton Osting. 2019. "An Approach to Quad Meshing Based on Harmonic Cross-Valued Maps and the Ginzburg-Landau Theory." SIAM Journal on Scientific Computing, 41, 1, A452--A479.
[64]
Stephanie Wang and Albert Chern. Aug. 2021. "Computing minimal surfaces with differential forms." en. ACM Transactions on Graphics, 40, 4, (Aug. 2021), 1--14.
[65]
Rundong Zhao, Mathieu Desbrun, Guo-Wei Wei, and Yiying Tong. 2019. "3D Hodge Decompositions of Edge- and Face-based Vector Fields." ACM Transactions on Graphics, 38, 6, 1--13.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 43, Issue 4
July 2024
1774 pages
EISSN:1557-7368
DOI:10.1145/3675116
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution-NoDerivs International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 19 July 2024
Published in TOG Volume 43, Issue 4

Check for updates

Author Tags

  1. directional field
  2. cross field
  3. singularity
  4. circle bundle
  5. lifting
  6. convex relaxation
  7. minimal section
  8. minimal current
  9. minimal surface
  10. computational geometric measure theory

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 351
    Total Downloads
  • Downloads (Last 12 months)351
  • Downloads (Last 6 weeks)46
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media