skip to main content
10.1145/3642970.3655844acmconferencesArticle/Chapter ViewAbstractPublication PageseurosysConference Proceedingsconference-collections
research-article

ALTO: An Efficient Network Orchestrator for Compound AI Systems

Published: 22 April 2024 Publication History

Abstract

We present ALTO, a network orchestrator for efficiently serving compound AI systems such as pipelines of language models. ALTO leverages an optimization opportunity specific to generative language models, which is streaming intermediate outputs from the language model to downstream stages. We highlight two challenges that emerge while serving these applications at scale: handling how some stages can be stateful across partial outputs, and handling how language models can produce variable amounts of text. To address these challenges, we motivate the need for an aggregation-aware routing interface and distributed prompt-aware scheduling. ALTO's partial output streaming increases throughput by up to 3× for a fixed latency target of 4 seconds / request and reduces tail latency by 1.8× compared to a baseline serving approach, on a complex chat bot verification pipeline.

References

[1]
D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, and S. Zdonik. 2003. Aurora: a data stream management system. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (San Diego, California) (SIGMOD '03). Association for Computing Machinery, New York, NY, USA, 666. https://doi.org/10.1145/872757.872855
[2]
Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured streaming: A declarative api for real-time applications in apache spark. In Proceedings of the 2018 International Conference on Management of Data. 601--613.
[3]
Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al. 2023. Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint arXiv:2308.09687 (2023).
[4]
Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl, and Kostas Tzoumas. 2015. Apache Flink: Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering (12 2015).
[5]
Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel Madden, Frederick Reiss, and Mehul A. Shah. 2003. TelegraphCQ: Continuous Dataflow Processing. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, California, USA, June 9-12, 2003. 668. https://doi.org/10.1145/872757.872857
[6]
Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain
[7]
Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett, and Eunsol Choi. 2023. Complex Claim Verification with Evidence Retrieved in the Wild. arXiv preprint arXiv:2305.11859 (2023).
[8]
I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He, Graham Neubig, Pengfei Liu, et al. 2023. Fac-Tool: Factuality Detection in Generative AI-A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios. arXiv preprint arXiv:2307.13528 (2023).
[9]
Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tumanov. 2020. InferLine: latency-aware provisioning and scaling for prediction serving pipelines. In Proceedings of the 11th ACM Symposium on Cloud Computing. 477--491.
[10]
Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Jason Weston. 2023. Chain-of-Verification Reduces Hallucination in Large Language Models. arXiv preprint arXiv:2309.11495 (2023).
[11]
Jie Huang, Wei Ping, Peng Xu, Mohammad Shoeybi, Kevin Chen-Chuan Chang, and Bryan Catanzaro. 2023. Raven: In-context learning with retrieval augmented encoder-decoder language models. arXiv preprint arXiv:2308.07922 (2023).
[12]
Gautier Izacard and Edouard Grave. 2021. Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. In EACL 2021-16th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 874--880.
[13]
Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y. Fu, Christopher Ré, and Azalia Mirhoseini. 2024. Hydragen: High-Throughput LLM Inference with Shared Prefixes. arXiv:2402.05099 [cs.LG]
[14]
Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling declarative language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714 (2023).
[15]
Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W Mahoney, Kurt Keutzer, and Amir Gholami. 2023. An LLM Compiler for Parallel Function Calling. arXiv preprint arXiv:2312.04511 (2023).
[16]
Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient memory management for large language model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles. 611--626.
[17]
Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 9459--9474. https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
[18]
Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao, Ruiying Geng, et al. 2023. Can llm already serve as a database interface? a big bench for large-scale database grounded text-to-sqls. arXiv preprint arXiv:2305.03111 (2023).
[19]
Jerry Liu. 2022. LlamaIndex. https://doi.org/10.5281/zenodo.1234
[20]
Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. 2023. Bolaa: Benchmarking and orchestrating llm-augmented autonomous agents. arXiv preprint arXiv:2308.05960 (2023).
[21]
Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. 2018. Ray: A distributed framework for emerging {AI} applications. In 13th USENIX symposium on operating systems design and implementation (OSDI 18). 561--577.
[22]
Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP '13). Association for Computing Machinery, New York, NY, USA, 439--455. https://doi.org/10.1145/2517349.2522738
[23]
Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. 2023. Skeleton-of-thought: Large language models can do parallel decoding. Proceedings ENLSP-III (2023).
[24]
Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage document ranking with BERT. arXiv preprint arXiv:1910.14424 (2019).
[25]
Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. 2023. Gorilla: Large language model connected with massive apis. arXiv preprint arXiv:2305.15334 (2023).
[26]
Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016).
[27]
Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and Yoav Shoham. 2023. In-context retrieval-augmented language models. arXiv preprint arXiv:2302.00083 (2023).
[28]
Stephen Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. 1995. Okapi at TREC-3. In Overview of the Third Text REtrieval Conference (TREC-3) (overview of the third text retrieval conference (trec-3) ed.). Gaithersburg, MD: NIST, 109--126. https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
[29]
Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu Mao, Xingyu Zeng, and Rui Zhao. 2023. Tptu: Task planning and tool usage of large language model-based ai agents. arXiv preprint arXiv:2308.03427 (2023).
[30]
Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li. 2023. Branch-solve-merge improves large language model evaluation and generation. arXiv preprint arXiv:2310.15123 (2023).
[31]
Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. 2022. PLAID: an efficient engine for late interaction retrieval. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 1747--1756.
[32]
Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late Interaction. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 3715--3734.
[33]
Sina Semnani, Violet Yao, Heidi Zhang, and Monica Lam. 2023. WikiChat: Stopping the Hallucination of Large Language Model Chatbots by Few-Shot Grounding on Wikipedia. In Findings of the Association for Computational Linguistics: EMNLP 2023. 2387--2413.
[34]
Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas Pfister. 2023. SQL-PaLM: Improved Large Language ModelAdaptation for Text-to-SQL. arXiv preprint arXiv:2306.00739 (2023).
[35]
Kenton Varda. 2008. Protocol buffers: Google's data interchange format. https://opensource.googleblog.com/2008/07/protocol-buffers-googles-data.html.
[36]
Guozhang Wang, Lei Chen, Ayusman Dikshit, Jason Gustafson, Boyang Chen, Matthias J Sax, John Roesler, Sophie Blee-Goldman, Bruno Cadonna, Apurva Mehta, et al. 2021. Consistency and completeness: Rethinking distributed stream processing in apache kafka. In Proceedings of the 2021 international conference on management of data. 2602--2613.
[37]
Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra, Alexey Tumanov, and Ion Stoica. 2019. Lineage stash: fault tolerance off the critical path. In Proceedings of the 27th ACM Symposium on Operating Systems Principles. 338--352.
[38]
Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. 2022. Self-Consistency Improves Chain of Thought Reasoning in Language Models. In The Eleventh International Conference on Learning Representations.
[39]
Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An architecture for well-conditioned, scalable internet services. ACM SIGOPS operating systems review 35, 5 (2001), 230--243.
[40]
Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. Autogen: Enabling next-gen llm applications via multi-agent conversation framework. arXiv preprint arXiv:2308.08155 (2023).
[41]
Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601 (2023).
[42]
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao. 2022. ReAct: Synergizing Reasoning and Acting in Language Models. In The Eleventh International Conference on Learning Representations.
[43]
Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized streams: fault-tolerant streaming computation at scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP '13). Association for Computing Machinery, New York, NY, USA, 423--438. https://doi.org/10.1145/2517349.2522737
[44]
Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller, Chris Potts, James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, and et al. 2024. The Shift from Models to Compound AI Systems. https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
[45]
Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. 2023. Efficiently Programming Large Language Models using SGLang. arXiv preprint arXiv:2312.07104 (2023).

Index Terms

  1. ALTO: An Efficient Network Orchestrator for Compound AI Systems

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    EuroMLSys '24: Proceedings of the 4th Workshop on Machine Learning and Systems
    April 2024
    218 pages
    ISBN:9798400705410
    DOI:10.1145/3642970
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 April 2024

    Check for updates

    Author Tags

    1. Compound AI systems
    2. Stream processing

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • NSF

    Conference

    EuroSys '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 18 of 26 submissions, 69%

    Upcoming Conference

    EuroSys '25
    Twentieth European Conference on Computer Systems
    March 30 - April 3, 2025
    Rotterdam , Netherlands

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 389
      Total Downloads
    • Downloads (Last 12 months)389
    • Downloads (Last 6 weeks)35
    Reflects downloads up to 01 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media