skip to main content
10.1145/3592980.3595311acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Elastic Use of Far Memory for In-Memory Database Management Systems

Published: 18 June 2023 Publication History

Abstract

The separation and independent scalability of compute and memory is one of the crucial aspects for modern in-memory database systems (IMDBMSs) in the cloud. The new, cache-coherent memory interconnect Compute Express Link (CXL) promises elastic memory capacity through memory pooling. In this work, we adapt the well-known IMDBMS, SAP HANA, for memory pools by features of table data placement and operational heap memory allocation on far memory, and study the impact of the limited bandwidth and higher latency of CXL. Our results show negligible performance degradation for TPC-C. For the analytical workloads of TPC-H, a notable impact on query processing is observed due to the limited bandwidth and long latency of our early CXL implementation. However, our emulation shows it would be acceptably smaller with the improved CXL memory devices.

References

[1]
Marcos K. Aguilera, Kimberly Keeton, Stanko Novakovic, and Sharad Singhal. 2019. Designing Far Memory Data Structures: Think Outside the Box. In HotOS. ACM, 120–126. https://doi.org/10.1145/3317550.3321433
[2]
Minseon Ahn, Andrew Chang, Donghun Lee, Jongmin Gim, Jungmin Kim, Jaemin Jung, Oliver Rebholz, Vincent Pham, Krishna T. Malladi, and Yang-Seok Ki. 2022. Enabling CXL Memory Expansion for In-Memory Database Management Systems. In DaMoN. ACM, 8:1–8:5. https://doi.org/10.1145/3533737.3535090
[3]
Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker. 2020. Can far memory improve job throughput?. In EuroSys. ACM, 14:1–14:16. https://doi.org/10.1145/3342195.3387522
[4]
Mihnea Andrei, Christian Lemke, Günter Radestock, 2017. SAP HANA adoption of non-volatile memory. Proceedings of the VLDB Endowment 10, 12 (2017), 1754–1765. https://doi.org/10.14778/3137765.3137780
[5]
AsteraLabs. 2022. CXL Memory Accelerators. https://www.asteralabs.com/products/cxl-memory-platform/
[6]
CCIX Consortium. 2017. CCIX. https://www.ccixconsortium.com/
[7]
Compute Express Link Consortium. 2019. CXL. https://www.computeexpresslink.org/
[8]
Gen-Z Consortium. 2016. Gen-Z. https://genzconsortium.org/
[9]
OpenCAPI Consortium. 2014. OpenCAPI. https://opencapi.org/
[10]
Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin J. Levandoski, Thomas Neumann, and Andrew Pavlo. 2017. Main Memory Database Systems. Found. Trends Databases 8, 1-2 (2017), 1–130. https://doi.org/10.1561/1900000058
[11]
Andreas Geyer, Daniel Ritter, Dong Hun Lee, Minseon Ahn, Johannes Pietrzyk, Alexander Krause, Dirk Habich, and Wolfgang Lehner. 2023. Working with Disaggregated Systems. What are the Challenges and Opportunities of RDMA and CXL?. In BTW(LNI, Vol. P-331). Gesellschaft für Informatik e.V., 751–755. https://doi.org/10.18420/BTW2023-47
[12]
Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022. Direct access, High-Performance memory disaggregation with DirectCXL. In USENIX ATC. 287–294. https://www.usenix.org/conference/atc22/presentation/gouk
[13]
Intel®. 2021. Intel® VTune™ Profiler. https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
[14]
Robert Lasch, Thomas Legler, Norman May, Bernhard Scheirle, and Kai-Uwe Sattler. 2022. Cost modelling for optimal data placement in heterogeneous main memory. Proceedings of the VLDB Endowment 15, 11 (2022), 2867–2880. https://www.vldb.org/pvldb/vol15/p2867-lasch.pdf
[15]
Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, 2023. Pond: Cxl-based memory pooling systems for cloud platforms. In ASPLOS. ACM, 574–587. https://doi.org/10.1145/3575693.3578835
[16]
Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit O. Kanaujia, and Prakash Chauhan. 2022. TPP: Transparent Page Placement for CXL-Enabled Tiered Memory. CoRR abs/2206.02878 (2022). https://doi.org/10.48550/arXiv.2206.02878 arXiv:2206.02878
[17]
J. McGlone, P. Palazzari, and J. B. Leclere. 2018. Accelerating Key In-memory Database Functionality with FPGA Technology. In ReConFig. 1–8. https://doi.org/10.1109/RECONFIG.2018.8641722
[18]
Samsung Newsroom. 2022. Samsung Electronics Introduces Industry’s First 512GB CXL Memory Module. https://news.samsung.com/global/samsung-electronics-introduces-industrys-first-512gb-cxl-memory-module
[19]
SK Hynix Newsroom. 2022. SK hynix Develops DDR5 DRAM CXLTM Memory to Expand the CXL Memory Ecosystem. https://news.skhynix.com/sk-hynix-develops-ddr5-dram-cxltm-memory-to-expand-the-cxl-memory-ecosystem/
[20]
S. J. Park, H. Kim, K.-S. Kim, J. So, J. Ahn, W.-J. Lee, D. Kim, Y.-J. Kim, J. Seok, J.-G. Lee, H.-Y. Ryu, C. Y. Lee, J. Prout, K.-C. Ryoo, S.-J. Han, M.-K. Kook, J. S. Choi, J. Gim, Y. S. Ki, S. Ryu, C. Park, D.-G. Lee, J. Cho, H. Song, and J. Y. Lee. 2022. Scaling of Memory Performance and Capacity with CXL Memory Expander. In 2022 IEEE HCS. IEEE, 1–27. https://doi.org/10.1109/HCS55958.2022.9895633
[21]
Intel® PCM. 2023. Intel® Performance Counter Monitor. https://github.com/intel/pcm
[22]
Hasso Plattner. 2009. A common database approach for OLTP and OLAP using an in-memory column database. In SIGMOD. ACM, 1–2. https://doi.org/10.1145/1559845.1559846
[23]
Hasso Plattner. 2014. The Impact of Columnar In-memory Databases on Enterprise Systems: Implications of Eliminating Transaction-maintained Aggregates. Proc. VLDB Endow. 7, 13 (Aug. 2014), 1722–1729. https://doi.org/10.14778/2733004.2733074
[24]
Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexander Boehm, Anastasia Ailamaki, and Kai-Uwe Sattler. 2015. Scaling Up Mixed Workloads: A Battle of Data Freshness, Flexibility, and Scheduling. Performance Characterization And Benchmarking: Traditional To Big Data 8904 (2015), 16. 97–112. https://doi.org/10.1007/978-3-319-15350-6_7
[25]
Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian Dragusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian Lemke, Sebastian Seifert, Sarika Iyer, Sasikanth Gottapu, Robert Schulze, Chaitanya Gottipati, Nirvik Basak, Yanhong Wang, Vivek Kandiyanallur, Santosh Pendap, Dheren Gala, Rajesh Almeida, and Prasanta Ghosh. 2019. Native Store Extension for SAP HANA. Proc. VLDB Endow. 12, 12 (2019), 2047–2058. https://doi.org/10.14778/3352063.3352123
[26]
Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and Christof Bornhövd. 2012. Efficient Transaction Processing in SAP HANA Database: The End of a Column Store Myth. In SIGMOD. ACM, 731–742. https://doi.org/10.1145/2213836.2213946
[27]
Joonseop Sim, Soohong Ahn, Taeyoung Ahn, Seungyong Lee, Myunghyun Rhee, Jooyoung Kim, Kwangsik Shin, Donguk Moon, Euiseok Kim, and Kyoung Park. 2023. Computational CXL-Memory Solution for Accelerating Memory-Intensive Applications. IEEE Comput. Archit. Lett. 22, 1 (2023), 5–8. https://doi.org/10.1109/LCA.2022.3226482
[28]
Montage Technology. 2022. Montage Technology Delivers the World’s First CXL™ Memory eXpander Controller. https://www.montage-tech.com/Press_Releases/20220506
[29]
TPC-C. 2023. TPC-C. https://www.tpc.org/tpcc/
[30]
TPC-H. 2023. TPC-H. https://www.tpc.org/tpch/
[31]
Qirui Yang, Runyu Jin, Bridget Davis, Devasena Inupakutika, and Ming Zhao. 2022. Performance Evaluation on CXL-enabled Hybrid Memory Pool. In NAS. IEEE, 1–5. https://doi.org/10.1109/NAS55553.2022.9925356

Cited By

View all
  • (2024)An Examination of CXL Memory Use Cases for In-Memory Database Management Systems Using SAP HANAProceedings of the VLDB Endowment10.14778/3685800.368580917:12(3827-3840)Online publication date: 8-Nov-2024
  • (2023)CXL Memory as Persistent Memory for Disaggregated HPC: A Practical ApproachProceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624175(983-994)Online publication date: 12-Nov-2023
  • (2023)GPU Graph Processing on CXL-Based Microsecond-Latency External MemoryProceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624173(962-972)Online publication date: 12-Nov-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
DaMoN '23: Proceedings of the 19th International Workshop on Data Management on New Hardware
June 2023
119 pages
ISBN:9798400701917
DOI:10.1145/3592980
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 June 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. CXL
  2. DBMS
  3. Database Management Systems
  4. Far memory
  5. In-Memory Database
  6. Memory pool

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

SIGMOD/PODS '23
Sponsor:

Acceptance Rates

DaMoN '23 Paper Acceptance Rate 17 of 23 submissions, 74%;
Overall Acceptance Rate 94 of 127 submissions, 74%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)267
  • Downloads (Last 6 weeks)17
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An Examination of CXL Memory Use Cases for In-Memory Database Management Systems Using SAP HANAProceedings of the VLDB Endowment10.14778/3685800.368580917:12(3827-3840)Online publication date: 8-Nov-2024
  • (2023)CXL Memory as Persistent Memory for Disaggregated HPC: A Practical ApproachProceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624175(983-994)Online publication date: 12-Nov-2023
  • (2023)GPU Graph Processing on CXL-Based Microsecond-Latency External MemoryProceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis10.1145/3624062.3624173(962-972)Online publication date: 12-Nov-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media