skip to main content
10.1145/3589334.3645358acmconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Harnessing Large Language Models for Text-Rich Sequential Recommendation

Published: 13 May 2024 Publication History

Abstract

Recent advances in Large Language Models (LLMs) have been changing the paradigm of Recommender Systems (RS). However, when items in the recommendation scenarios contain rich textual information, such as product descriptions in online shopping or news headlines on social media, LLMs require longer texts to comprehensively depict the historical user behavior sequence. This poses significant challenges to LLM-based recommenders, such as over-length limitations, extensive time and space overheads, and suboptimal model performance. To this end, in this paper, we design a novel framework for harnessing Large Language Models for Text-Rich Sequential Recommendation (LLM-TRSR). Specifically, we first propose to segment the user historical behaviors and subsequently employ an LLM-based summarizer for summarizing these user behavior blocks. Particularly, drawing inspiration from the successful application of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) models in user modeling, we introduce two unique summarization techniques in this paper, respectively hierarchical summarization and recurrent summarization. Then, we construct a prompt text encompassing the user preference summary, recent user interactions, and candidate item information into an LLM-based recommender, which is subsequently fine-tuned using Supervised Fine-Tuning (SFT) techniques to yield our final recommendation model. We also use Low-Rank Adaptation (LoRA) for Parameter-Efficient Fine-Tuning (PEFT). We conduct experiments on two public datasets, and the results clearly demonstrate the effectiveness of our approach.

Supplemental Material

MP4 File
Supplemental video

References

[1]
Mingxiao An, Fangzhao Wu, Chuhan Wu, Kun Zhang, Zheng Liu, and Xing Xie. 2019. Neural news recommendation with long-and short-term user representations. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 336--345.
[2]
Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. 2023. Tallrec: An effective and efficient tuning framework to align large language model with recommendation. arXiv preprint arXiv:2305.00447 (2023).
[3]
Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. 2023. Pythia: A suite for analyzing large language models across training and scaling. In International Conference on Machine Learning. PMLR, 2397--2430.
[4]
Biao Chang, Hengshu Zhu, Yong Ge, Enhong Chen, Hui Xiong, and Chang Tan. 2014. Predicting the popularity of online serials with autoregressive models. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. 1339--1348.
[5]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
[6]
Chuyu Fang, Chuan Qin, Qi Zhang, Kaichun Yao, Jingshuai Zhang, Hengshu Zhu, Fuzhen Zhuang, and Hui Xiong. 2023. Recruitpro: A pretrained language model with skill-aware prompt learning for intelligent recruitment. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 3991--4002.
[7]
Yongqiang Han, Likang Wu, Hao Wang, Guifeng Wang, Mengdi Zhang, Zhi Li, Defu Lian, and Enhong Chen. 2023. GUESR: A global unsupervised dataenhancement with bucket-cluster sampling for sequential recommendation. In International Conference on Database Systems for Advanced Applications. Springer, 286--296.
[8]
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web. 173--182.
[9]
Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2015. Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015).
[10]
Yupeng Hou, Binbin Hu, Zhiqiang Zhang, and Wayne Xin Zhao. 2022. Core: simple and effective session-based recommendation within consistent representation space. In Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval. 1796--1801.
[11]
Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021).
[12]
Xiao Hu, Yuan Cheng, Zhi Zheng, Yue Wang, Xinxin Chi, and Hengshu Zhu. 2023. BOSS: A Bilateral Occupational-Suitability-Aware Recommender System for Online Recruitment. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4146--4155.
[13]
Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang, Chen Luo, Hongzhi Wen, Haoyu Han, Hanqing Lu, Zhengyang Wang, Ruirui Li, et al. 2023. Amazon-M2: A Multilingual Multi-locale Shopping Session Dataset for Recommendation and Text Generation. arXiv preprint arXiv:2307.09688 (2023).
[14]
Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In 2018 IEEE international conference on data mining (ICDM). IEEE, 197--206.
[15]
Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of naacL-HLT, Vol. 1. 2.
[16]
Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017. Neural attentive session-based recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 1419--1428.
[17]
Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan Zhang. 2023. Is ChatGPT a Good Recommender? A Preliminary Study. arXiv preprint arXiv:2304.10149 (2023).
[18]
Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. 2023. Lost in the middle: How language models use long contexts. arXiv preprint arXiv:2307.03172 (2023).
[19]
Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017).
[20]
Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heinz, and Dan Roth. 2021. Recent advances in natural language processing via large pre-trained language models: A survey. arXiv preprint arXiv:2111.01243 (2021).
[21]
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems 35 (2022), 27730--27744.
[22]
Bo Peng, Ben Burns, Ziqi Chen, Srinivasan Parthasarathy, and Xia Ning. 2024. Towards Efficient and Effective Adaptation of Large Language Models for Sequential Recommendation. (2024).
[23]
Xiao Pu, Mingqi Gao, and Xiaojun Wan. 2023. Summarization is (Almost) Dead. arXiv preprint arXiv:2309.09558 (2023).
[24]
Chuan Qin, Le Zhang, Rui Zha, Dazhong Shen, Qi Zhang, Ying Sun, Chen Zhu, Hengshu Zhu, and Hui Xiong. 2023. A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics. arXiv preprint arXiv:2307.03195 (2023).
[25]
Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan. 2021. U-BERT: Pre-training user representations for improved recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4320--4327.
[26]
Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018. Improving language understanding by generative pre-training. (2018).
[27]
Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.
[28]
Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 3505--3506.
[29]
Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. 2019. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM international conference on information and knowledge management. 1441--1450.
[30]
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).
[31]
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).
[32]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems 30 (2017).
[33]
Chao Wang, Hengshu Zhu, Qiming Hao, Keli Xiao, and Hui Xiong. 2021. Variable interval time sequence modeling for career trajectory prediction: Deep collaborative perspective. In Proceedings of the Web Conference 2021. 612--623.
[34]
Chao Wang, Hengshu Zhu, Chen Zhu, Chuan Qin, and Hui Xiong. 2020. Setrank: A setwise bayesian approach for collaborative ranking from implicit feedback. In Proceedings of the aaai conference on artificial intelligence, Vol. 34. 6127--6136.
[35]
Chuhan Wu, Fangzhao Wu, Tao Qi, Chenliang Li, and Yongfeng Huang. 2022. Is News Recommendation a Sequential Recommendation Task?. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2382--2386.
[36]
Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian, Danyang Liu, Xing Xie, Jianfeng Gao, WinnieWu, et al. 2020. Mind: A large-scale dataset for news recommendation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 3597--3606.
[37]
Likang Wu, Zhaopeng Qiu, Zhi Zheng, Hengshu Zhu, and Enhong Chen. 2023. Exploring large language model for graph data understanding in online job recommendations. arXiv preprint arXiv:2307.05722 (2023).
[38]
Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu, Hengshu Zhu, Qi Liu, et al. 2023. A Survey on Large Language Models for Recommendation. arXiv preprint arXiv:2305.19860 (2023).
[39]
Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. 2023. Effective Long-Context Scaling of Foundation Models. arXiv preprint arXiv:2309.16039 (2023).
[40]
Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural information processing systems 32 (2019).
[41]
Qi Zhang, Hengshu Zhu, Ying Sun, Hao Liu, Fuzhen Zhuang, and Hui Xiong. 2021. Talent demand forecasting with attentive neural sequential model. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 3906--3916.
[42]
Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey of large language models. arXiv preprint arXiv:2303.18223 (2023).
[43]
Zhi Zheng, Zhaopeng Qiu, Xiao Hu, Likang Wu, Hengshu Zhu, and Hui Xiong. 2023. Generative job recommendations with large language model. arXiv preprint arXiv:2307.02157 (2023).
[44]
Zhi Zheng, Zhaopeng Qiu, Hui Xiong, Xian Wu, Tong Xu, Enhong Chen, and Xiangyu Zhao. 2022. DDR: Dialogue Based Doctor Recommendation for Online Medical Service. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 4592--4600.
[45]
Zhi Zheng, Zhaopeng Qiu, Tong Xu, XianWu, Xiangyu Zhao, Enhong Chen, and Hui Xiong. 2022. CBR: context bias aware recommendation for debiasing user modeling and click prediction. In Proceedings of the ACM Web Conference 2022. 2268--2276.
[46]
Zhi Zheng, Chao Wang, Tong Xu, Dazhong Shen, Penggang Qin, Baoxing Huai, Tongzhu Liu, and Enhong Chen. 2021. Drug package recommendation via interaction-aware graph induction. In Proceedings of the Web Conference 2021. 1284--1295.
[47]
Zhi Zheng, Chao Wang, Tong Xu, Dazhong Shen, Penggang Qin, Xiangyu Zhao, Baoxing Huai, XianWu, and Enhong Chen. 2023. Interaction-aware drug package recommendation via policy gradient. ACM Transactions on Information Systems 41, 1 (2023), 1--32.
[48]
Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 5941--5948.
[49]
Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 1059--1068.

Cited By

View all

Index Terms

  1. Harnessing Large Language Models for Text-Rich Sequential Recommendation

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      WWW '24: Proceedings of the ACM Web Conference 2024
      May 2024
      4826 pages
      ISBN:9798400701719
      DOI:10.1145/3589334
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 13 May 2024

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. large language model
      2. recommender system
      3. sequential recommendation

      Qualifiers

      • Research-article

      Funding Sources

      • Guangzhou-HKUST(GZ) Joint Funding Program
      • National Natural Science Foundation of China

      Conference

      WWW '24
      Sponsor:
      WWW '24: The ACM Web Conference 2024
      May 13 - 17, 2024
      Singapore, Singapore

      Acceptance Rates

      Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)655
      • Downloads (Last 6 weeks)129
      Reflects downloads up to 22 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media