skip to main content
10.1145/3583133.3596383acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article
Open access

Using a Database to Support Interactive Multiobjective Optimization, Visualization, and Analysis

Published: 24 July 2023 Publication History

Abstract

Many libraries of open-source implementations of multiobjective optimization problems (MOPs) and evolutionary algorithms (MOEAs) have been developed in recent years. These libraries enable researchers to solve their MOPs using diverse MOEAs. Some libraries also implement interactive MOEAs, which enable decision-makers (experts in the domain of the MOP) to provide their preferences and guide the optimization process toward their region of interest. These libraries also provide access to visualization methods and benchmarking tools. However, they do not currently implement a database to store and utilize the data generated while running MOEAs.
We propose the creation of SIVA DB, a database designed to be easily incorporated into existing libraries as a modular addition. SIVA DB provides a standard way to archive an MOEA's population and the metadata associated with each population member. Such metadata can include, e.g., the parameters and state of the MOEA and the preferences the decision-maker gives (in the case of interactive MOEAs). The database can store data from multiple runs of any number of MOEAs, and even data from different MOPs. SIVA DB provides easy access to the contained data to analyze the optimization process or create efficient MOEAs. We demonstrate the latter in this paper with experiments.

References

[1]
B. Afsar, D. Podkopaev, and K. Miettinen. 2020. Data-driven Interactive Multiobjective Optimization: Challenges and a Generic Multi-agent Architecture. Procedia Computer Science 176 (2020), 281--290.
[2]
A. Benitez-Hidalgo, A. J. Nebro, J. Garcia-Nieto, I. Oregi, and J. Del Ser. 2019. jMetalPy: A Python framework for multi-objective optimization with metaheuristics. Swarm and Evolutionary Computation 51 (2019), article 100598.
[3]
F. Biscani, D. Izzo, and C. H. Yam. 2010. A global optimisation toolbox for massively parallel engineering optimisation. arXiv:1004.3824 (2010).
[4]
J. Blank and K. Deb. 2020. Pymoo: Multi-Objective Optimization in Python. IEEE Access 8 (2020), 89497--89509.
[5]
R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff. 2016. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation 20, 5 (2016), 773--791.
[6]
T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen. 2019. A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms. Soft Computing 23, 9 (2019), 3137--3166.
[7]
C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen. 2007. Evolutionary algorithms for solving multi-objective problems. Springer New York.
[8]
Hadka. D. [n. d.]. Platypus: Multiobjective Optimization in Python. https://platypus.readthedocs.io. https://platypus.readthedocs.io Accessed February 9th, 2023.
[9]
K. Deb. 2001. Multi-objective optimization using evolutionary algorithms. Wiley UK, Chichester.
[10]
K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. 2002. Scalable Multi-Objective Optimization Test Problems. In Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC 2002). IEEE, 825--830.
[11]
J. J. Durillo and A. J. Nebro. 2011. jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software 42, 10 (2011), 760--771.
[12]
J. G. Falcón-Cardona and C. A. C. Coello. 2020. Indicator-based multi-objective evolutionary algorithms: A comprehensive survey. Comput. Surveys 53, 2 (2020), 1--35.
[13]
F.-A. Fortin, F.-M De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné. 2012. DEAP: Evolutionary algorithms made easy. The Journal of Machine Learning Research 13, 1 (2012), 2171--2175.
[14]
D. Hadka. [n. d.]. MOEA Framework: A Free and Open Source Java Framework for Multiobjective Optimization. http://moeaframework.org/. http://moeaframework.org/ Accessed February 9th, 2023.
[15]
J. Hakanen, S. Radoš, G. Misitano, B. S. Saini, K. Miettinen, and K. Matković. 2022. Interactivized: Visual Interaction for Better Decisions With Interactive Multiobjective Optimization. IEEE Access 10 (2022), 33661--33678.
[16]
N. Hansen, Y. Akimoto, and P. Baudis. 2019. CMA-ES/pycma on Github. Zenodo
[17]
N. Hansen and A. Ostermeier. 2001. Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9, 2 (2001), 159--195.
[18]
M. J. Hernandez. 2013. Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design. Addison-Wesley Professional.
[19]
H. Ishibuchi, N. Tsukamoto, and Y. Nojima. 2008. Evolutionary many-objective optimization: A short review. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). 2419--2426.
[20]
D. Izzo and F. Biscani. [n. d.]. PyGMO: Python Parallel Global Multiobjective Optimizer. https://esa.github.io/pygmo. https://esa.github.io/pygmo Accessed February 9th, 2023.
[21]
Y. Jin, H. Wang, and C. Sun. 2021. Data-Driven Evolutionary Optimization. Springer.
[22]
K. Kaur and R. Rani. 2013. Modeling and querying data in NoSQL databases. In 2013 IEEE International Conference on Big Data. 1--7.
[23]
K. Li, R. Wang, T. Zhang, and H. Ishibuchi. 2018. Evolutionary Many-Objective Optimization: A Comparative Study of the State-of-the-Art. IEEE Access 6 (2018), 26194--26214.
[24]
K. Miettinen. 1999. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston.
[25]
G. Misitano, B. S. Saini, B. Afsar, B. Shavazipour, and K. Miettinen. 2021. DES-DEO: The modular and open source framework for interactive multiobjective optimization. IEEE Access 9 (2021), 148277--148295.
[26]
Y. Tian, R. Cheng, X. Zhang, and Y. Jin. 2017. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Computational Intelligence Magazine 12, 4 (2017), 73--87.
[27]
A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh. 2016. A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Transactions on Evolutionary Computation 21, 3 (2016), 440--462.
[28]
B. Xin, L. Chen, J. Chen, H. Ishibuchi, K. Hirota, and B. Liu. 2018. Interactive Multiobjective Optimization: A Review of the State-of-the-Art. IEEE Access 6 (2018), 41256--41279.
[29]
E. Zitzler and L. Thiele. 1999. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3, 4 (1999), 257--271.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation
July 2023
2519 pages
ISBN:9798400701207
DOI:10.1145/3583133
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 July 2023

Check for updates

Author Tags

  1. evolutionary multiobjective optimization
  2. interactive optimization
  3. decision support software

Qualifiers

  • Research-article

Funding Sources

Conference

GECCO '23 Companion
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 187
    Total Downloads
  • Downloads (Last 12 months)108
  • Downloads (Last 6 weeks)10
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media