skip to main content
10.1145/3570361.3613297acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Cost-effective On-device Continual Learning over Memory Hierarchy with Miro

Published: 02 October 2023 Publication History

Abstract

Continual learning (CL) trains NN models incrementally from a continuous stream of tasks. To remember previously learned knowledge, prior studies store old samples over a memory hierarchy and replay them when new tasks arrive. Edge devices that adopt CL to preserve data privacy are typically energy-sensitive and thus require high model accuracy while not compromising energy efficiency, i.e., cost-effectiveness. Our work is the first to explore the design space of hierarchical memory replay-based CL to gain insights into achieving cost-effectiveness on edge devices. We present Miro, a novel system runtime that carefully integrates our insights into the CL framework by enabling it to dynamically configure the CL system based on resource states for the best cost-effectiveness. To reach this goal, Miro also performs online profiling on parameters with clear accuracy-energy trade-offs and adapts to optimal values with low overhead. Extensive evaluations show that Miro significantly outperforms baseline systems we build for comparison, consistently achieving higher cost-effectiveness.

References

[1]
Carousel Memory (CarM) - Official Pytorch Implementation. https://github.com/omnia-unist/CarM.
[2]
Convenient Power Measurements on the Jetson TX2/Tegra X2 Board. https://embeddeddl.wordpress.com/2018/04/25/convenient-power-measurements-on-the-jetson-tx2-tegra-x2-board/.
[3]
Jetson TX2 Module. https://developer.nvidia.com/embedded/jetson-tx2.
[4]
Jetson Xavier NX Series. https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx.
[5]
OEM PRODUCT DESIGN GUIDE: NVIDIA Jetson TX2. https://usermanual.wiki/Pdf/jetsontx2oemproductdesignguide.2134990230.pdf.
[6]
Python Shared Memory. https://docs.python.org/3/library/multiprocessing.html.
[7]
Tiny ImageNet Visual Recognition Challenge. https://tiny-imagenet.herokuapp.com.
[8]
J. Bang, H. Kim, Y. Yoo, J.-W. Ha, and J. Choi. Rainbow Memory: Continual Learning with a Memory of Diverse Samples. In CVPR, 2021.
[9]
B. Barshan and K. Altun. Daily and Sports Activities. UCI Machine Learning Repository, 2013.
[10]
R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, N. Karianakis, Y. Shu, K. Hsieh, V. Bahl, and I. Stoica. Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers. In NSDI, 2022.
[11]
Z. Borsos, M. Mutnỳ, and A. Krause. Coresets via Bilevel Optimization for Continual Learning and Streaming. In NeurIPS, 2020.
[12]
P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. CALDERARA. Dark Experience for General Continual Learning: a Strong, Simple Baseline. In NeurIPS, 2020.
[13]
F. M. Castro, M. J. Marin-Jimenez, N. Guil, C. Schmid, and K. Alahari. End-to-End Incremental Learning. In ECCV, 2018.
[14]
A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. S. Torr. Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence. In ECCV, 2018.
[15]
A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient Lifelong Learning with A-GEM. In ICLR, 2019.
[16]
A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ranzato. On Tiny Episodic Memories in Continual Learning. arXiv:1902.10486, 2019.
[17]
J. Chauhan, Y. D. Kwon, P. Hui, and C. Mascolo. ContAuth: Continual Learning Framework for Behavioral-based User Authentication. IMWUT, 4(4):1--23, 2020.
[18]
T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training Deep Nets with Sublinear Memory Cost. arXiv preprint arXiv:1604.06174, 2016.
[19]
Y. Cong, M. Zhao, J. Li, S. Wang, and L. Carin. GAN Memory with No Forgetting. In NeurIPS, 2020.
[20]
A. Diwan, C.-F. Yeh, W.-N. Hsu, P. Tomasello, E. Choi, D. Harwath, and A. Mohamed. Continual Learning for On-Device Speech Recognition using Disentangled Conformers. arXiv preprint arXiv:2212.01393, 2022.
[21]
K. Fall and S. Floyd. Simulation-Based Comparisons of Tahoe, Reno and SACK TCP. SIGCOMM Comput. Commun. Rev., 26(3):5--21, jul 1996.
[22]
A. Gepperth and B. Hammer. Incremental Learning Algorithms and Applications. In ESANN, 2016.
[23]
I. Gim and J. Ko. Memory-Efficient DNN Training on Mobile Devices. In MobiSys, 2022.
[24]
A. Griewank and A. Walther. Algorithm 799: Revolve: An Implementation of Checkpointing for the Reverse or Adjoint Mode of Computational Differentiation. ACM Trans. Math. Softw., 26(1):19--45, mar 2000.
[25]
S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP Variant. SIGOPS Oper. Syst. Rev., 42(5):64--74, jul 2008.
[26]
T. L. Hayes and C. Kanan. Online Continual Learning for Embedded Devices. In Conference on Lifelong Learning Agents, 2022.
[27]
K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770--778, 2016.
[28]
W. Hu, Z. Lin, B. Liu, C. Tao, Z. Tao, J. Ma, D. Zhao, and R. Yan. Overcoming Catastrophic Forgetting via Model Adaptation. In ICLR, 2019.
[29]
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep Networks with Stochastic Depth. In European Conference on Computer Vision, 2016.
[30]
Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen. GPipe: Efficient Training of Giant Neural Networks Using Pipeline Parallelism. In NeurIPS, 2019.
[31]
M. Khani, G. Ananthanarayanan, K. Hsieh, J. Jiang, R. Netravali, Y. Shu, M. Alizadeh, and V. Bahl. RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics. In NSDI, 2023.
[32]
A. Krizhevsky, G. Hinton, et al. Learning Multiple Layers of Features from Tiny Images. 2009.
[33]
Y. D. Kwon, J. Chauhan, A. Kumar, P. H. HKUST, and C. Mascolo. Exploring System Performance of Continual Learning for Mobile and Embedded Sensing Applications. In IEEE/ACM SEC, 2021.
[34]
S. Lee, M. Weerakoon, J. Choi, M. Zhang, D. Wang, and M. Jeon. CarM: Hierarchical Episodic Memory for Continual Learning. In DAC, 2022.
[35]
C. F. S. Leite and Y. Xiao. Resource-Efficient Continual Learning for Sensor-Based Human Activity Recognition. ACM Transactions on Embedded Computing Systems, 21(6):1--25, 2022.
[36]
Y. Liu, Y. Su, A.-A. Liu, B. Schiele, and Q. Sun. Mnemonics Training: Multi-Class Incremental Learning Without Forgetting. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.
[37]
D. Lopez-Paz and M. Ranzato. Gradient Episodic Memory for Continual Learning. In NeurIPS, 2017.
[38]
M. McCloskey and Neal. Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem. In Psychology of Learning and Motivation, 1989.
[39]
L. Pellegrini, V. Lomonaco, G. Graffieti, and D. Maltoni. Continual Learning at the Edge: Real-Time Training on Smartphone Devices. arXiv preprint arXiv:2105.13127, 2021.
[40]
A. Prabhu, H. A. Al Kader Hammoud, P. K. Dokania, P. H. Torr, S.-N. Lim, B. Ghanem, and A. Bibi. Computationally Budgeted Continual Learning: What Does Matter? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3698--3707, June 2023.
[41]
A. Prabhu, P. H. Torr, and P. K. Dokania. GDumb: A Simple Approach that Questions Our Progress in Continual Learning. In ECCV, 2020.
[42]
S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. iCaRL: Incremental Classifier and Representation Learning. In CVPR, 2017.
[43]
D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, and G. Wayne. Experience Replay for Continual Learning. 2019.
[44]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis, 115:211--252, 2015.
[45]
J. Salamon and J. P. Bello. Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification. IEEE Signal Processing Letters, 24:279--283, 2016.
[46]
J. Salamon, C. Jacoby, and J. P. Bello. A Dataset and Taxonomy for Urban Sound Research. In 22nd ACM International Conference on Multimedia (ACM-MM'14), pages 1041--1044, Orlando, FL, USA, Nov. 2014.
[47]
M. Schiemer, L. Fang, S. Dobson, and J. Ye. Online Continual Learning for Human Activity Recognition. Available at SSRN 4357622.
[48]
A. Seff, A. Beatson, D. Suo, and H. Liu. Continual Learning in Generative Adversarial Nets. arXiv preprint arxiv:1705.08395, 2017.
[49]
K. Shaheen, M. A. Hanif, O. Hasan, and M. Shafique. Continual Learning for Real-World Autonomous Systems: Algorithms, Challenges and Frameworks. Journal of Intelligent & Robotic Systems, 105(1):9, 2022.
[50]
D. Shim, Z. Mai, J. Jeong, S. Sanner, H. Kim, and J. Jang. Online Class-Incremental Continual Learning with Adversarial Shapley Value. In AAAI, 2021.
[51]
H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual Learning with Deep Generative Replay. In NeurIPS, 2017.
[52]
G. Sokar, D. C. Mocanu, and M. Pechenizkiy. SpaceNet: Make Free Space For Continual Learning. Neurocomputing, 439:1--11, 2020.
[53]
K. N. Vokinger, S. Feuerriegel, and A. S. Kesselheim. Continual Learning in Medical Devices: FDA's Action Plan and Beyond. The Lancet Digital Health, 3(6):e337--e338, 2021.
[54]
Q. Wang, M. Xu, C. Jin, X. Dong, J. Yuan, X. Jin, G. Huang, Y. Liu, and X. Liu. Melon: Breaking the Memory Wall for Resource-Efficient on-Device Machine Learning. In MobiSys, 2022.
[55]
Y. Wang, Z. Jiang, X. Chen, P. Xu, Y. Zhao, Y. Lin, and Z. Wang. E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings. In NeurIPS, 2019.
[56]
Z. Wang, Z. Zhan, Y. Gong, G. Yuan, W. Niu, T. Jian, B. Ren, S. Ioannidis, Y. Wang, and J. Dy. SparCL: Sparse Continual Learning on the Edge. In NeurIPS, 2022.
[57]
C. Wu, L. Herranz, X. Liu, y. wang, J. van de Weijer, and B. Raducanu. Memory Replay GANs: Learning to Generate New Categories without Forgetting. In Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.
[58]
Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large Scale Incremental Learning. In CVPR, 2019.
[59]
L. Yang, S. Lin, F. Zhang, J. Zhang, and D. Fan. Efficient Self-supervised Continual Learning with Progressive Task-correlated Layer Freezing. ArXiv, abs/2303.07477, 2023.
[60]
J. You, J.-W. Chung, and M. Chowdhury. Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training. In NSDI, 2023.
[61]
Y. Zhao, D. Saxena, and J. Cao. Memory-Efficient Domain Incremental Learning for Internet of Things. In SenSys, 2023.

Cited By

View all

Index Terms

  1. Cost-effective On-device Continual Learning over Memory Hierarchy with Miro

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ACM MobiCom '23: Proceedings of the 29th Annual International Conference on Mobile Computing and Networking
      October 2023
      1605 pages
      ISBN:9781450399906
      DOI:10.1145/3570361
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 02 October 2023

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. continual learning
      2. on-device training
      3. energy efficiency
      4. episodic memory management

      Qualifiers

      • Research-article

      Conference

      ACM MobiCom '23
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 440 of 2,972 submissions, 15%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)403
      • Downloads (Last 6 weeks)29
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Advances in edge-cloud collaboration and evolution for large-small modelsJournal of Image and Graphics10.11834/jig.24001129:6(1510-1534)Online publication date: 2024
      • (2024)On-device Training: A First Overview on Existing SystemsACM Transactions on Sensor Networks10.1145/369600320:6(1-39)Online publication date: 14-Sep-2024
      • (2024)FedConv: A Learning-on-Model Paradigm for Heterogeneous Federated ClientsProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661880(398-411)Online publication date: 3-Jun-2024
      • (2024)Delta: A Cloud-assisted Data Enrichment Framework for On-Device Continual LearningProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3690701(1408-1423)Online publication date: 4-Dec-2024
      • (2024)Heterogeneity-Aware Memory Efficient Federated Learning via Progressive Layer Freezing2024 IEEE/ACM 32nd International Symposium on Quality of Service (IWQoS)10.1109/IWQoS61813.2024.10682916(1-10)Online publication date: 19-Jun-2024
      • (2024)A collective AI via lifelong learning and sharing at the edgeNature Machine Intelligence10.1038/s42256-024-00800-26:3(251-264)Online publication date: 22-Mar-2024

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media