skip to main content
article
Free access

Initial Value Routines in the NAG Library

Published: 01 December 1979 Publication History
First page of PDF

References

[1]
Bus, J.C P., AND DEKKER, T.J. Two efficient algorithms with guaranteed convergence for finding a zero of a function. ACM Trans Math. Software 1, 4 (Dec. 1975), 330-346.
[2]
CRAIGIE, J.A.I. A variable order multlstep method for the numerical solution of stiff systems of ordinary differential equations. NA Rep. 11, Dep. of Mathematics, U. of Manchester, England, 1975.
[3]
DUFF, I. MA28--a set of Fortran subroutines for sparse unsymmetnc linear equations. AERE Rep R. 8730, HMSO, London, 1977.
[4]
ENRIGHT, W.H., BEDET, R., FARKAS, I., AND HULL, T.E. Test results on initial value methods for non-stiff ordinary differential equations. Rep. 68, Dep. of Comptr. Sci., U. of Toronto, Canada, 1974.
[5]
ENRIGHT, W.H., HULL, T. E., AND LINDBERG, B. Comparing numerical methods for stiff systems of ODE's. BIT 15 (1975), 10-48.
[6]
GLADWELL, I. On the ordinary differential equation initial value routines in the NAG library. NA Rep. 38, Dep. of Mathematics, U. of Manchester, England, 1979.
[7]
GLADWELL, I. The development of the boundary value codes in the ordinary differential equations chapter of the NAG library. NA Rep. 30, Dep. of Mathematics, U. of Manchester, England, 1978. To be pubhshed in modified form.
[8]
GLADWELL, I., CRAIGIE, J.A.I., AND CROWTHER, C.R. Testing initial-value problem subroutines as black boxes. NA Rep. 34, Dep. of Mathematics, U. of Manchester, England, 1979.
[9]
HINDMARSH, A.C. A tentatzve user interface standard for ODEPACK. Rep. UCID-17954, Lawrence Llvermore Lab., Livermore, Calif., 1978.
[10]
HINDMARSH, A.C. GEAR: Ordinary dafferentlal equation solver. Rep. UCID-30001, Rev. 3, Lawrence Llvermore Lab., Livermore, Calif., 1974.
[11]
HULL, T.E., ENRIGHT, W.H., AND JACKSON, K.R. Users guide to DVERK--a subroutine for solving non-stiff ODE's. Rep. 100, Dep. of Comptr. Sel., U. of Toronto, Canada, 1976.
[12]
NAG Manual, Mark 7. NAG Central Office, 7 Banbury Road, Oxford, England, 1979.
[13]
PR~CE, J.D. Software for Sturm-Liouville elgenvalues with error bounds. Rep. BUCSTR 79-02, Comptr. Sci. Dep., U of Bristol, England, 1978. Submitted for pubhcation.
[14]
SHAMPINE, L.F. Better software for O.D.E.'s. Rep. SAND 78-1352, Sancha Labs., Albuquerque, N. Mex., 1978.
[15]
SHAMPINE, L.F. Stiffness and nonstiff dLfferential equation solvers, II: Detecting stiffness with Runge-Kutta methods. ACM Trans Math. Software 3, 1 (March 1977), 44-53.
[16]
SHAMPINE, L.F., AND HIEBERT, K L. Detecting stiffness with the Fehlberg (4, 5) formulas. Comput. Math. Appl. 3 (1977), 41-46.
[17]
SHAMPINE, L.F., AND WATTS, H.A. Global error estimation for ordinary differential equations. ACM Trans. Math. Software 2, 2 (June 1976), 172-186.
[18]
SHAMPINE, L.F., AND WATTS, H.A. Practical solution of ordinary differential equations by Runge- Kutta methods. Rep. SAND 76-0585, Sandia Labs., Albuquerque, N. Mex., 1976
[19]
SIEMIENIUCH, J.L. A study of a method of F.T. Krogh for the numerical solution of ordinary differentml equations. M.Sc. Th., U. of Manchester, England, 1972.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 5, Issue 4
Dec. 1979
153 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/355853
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 1979
Published in TOMS Volume 5, Issue 4

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)58
  • Downloads (Last 6 weeks)8
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media