skip to main content
10.1145/3534678.3539101acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Combo-Fashion: Fashion Clothes Matching CTR Prediction with Item History

Published: 14 August 2022 Publication History

Abstract

As one of the fundamental trends for future development of recommender systems, Fashion Clothes Matching Recommendation for click-through rate (CTR) prediction has become an increasingly essential task. Unlike traditional single-item recommendation, a combo item, composed of a top item (e.g. a shirt) and a bottom item (e.g. a skirt), is recommended. In such a task, the matching effect between these two single items plays a crucial role, and greatly influences the users' preferences; however, it is usually neglected by previous approaches in CTR prediction. In this work, we tackle this problem by designing a novel algorithm called Combo-Fashion, which extracts the matching effect by introducing the matching history of the combo item with two cascaded modules: (i) Matching Search Module (MSM) seeks the popular combo items and undesirable ones as a positive set and a negative set, respectively; (ii) Matching Prediction Module (MPM) models the precise relationship between the candidate combo item and the positive/negative set by an attention-based deep model. Besides, the CPM Fashion Attribute, considered from characteristic, pattern and material, is applied to capture the matching effect further. As part of this work, we release two large-scale datasets consisting of 3.56 million and 6.01 million user behaviors with rich context and fashion information in millions of combo items. The experimental results over these two real-world datasets have demonstrated the superiority of our proposed model with significant improvements. Furthermore, we have deployed Combo-Fashion onto the platform of Taobao to recommend the combo items to the users, where an 8-day online A/B test proved the effectiveness of Combo-Fashion with an improvement of pCTR by 1.02% and uCTR by 0.70%.

Supplemental Material

MP4 File
Presentation Video

References

[1]
Wen Chen, Pipei Huang, Jiaming Xu, Xin Guo, Cheng Guo, Fei Sun, Chao Li, Andreas Pfadler, Huan Zhao, and Binqiang Zhao. 2019. POG: personalized outfit generation for fashion recommendation at Alibaba iFashion. In KDD. 2662--2670.
[2]
Hengtze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Deepak Chandra, Hrishi Aradhye, Glen Anderson, Greg S Corrado, Wei Chai, Mustafa Ispir, et al. 2016. Wide & Deep Learning for Recommender Systems. In DLRS@RecSys .
[3]
Wen-Huang Cheng, Sijie Song, Chieh-Yun Chen, Shintami Chusnul Hidayati, and Jiaying Liu. 2021. Fashion Meets Computer Vision: A Survey. ACM Computing Surveys (CSUR), Vol. 54, 4 (2021), 1--41.
[4]
Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM conference on recommender systems. 191--198.
[5]
Yashar Deldjoo, Fatemeh Nazary, Arnau Ramisa, Julian Mcauley, Giovanni Pellegrini, Alejandro Bellogin, and Tommaso Di Noia. 2022. A Review of Modern Fashion Recommender Systems. arXiv preprint arXiv:2202.02757 (2022).
[6]
Xue Dong, Xuemeng Song, Fuli Feng, Peiguang Jing, Xin-Shun Xu, and Liqiang Nie. 2019. Personalized capsule wardrobe creation with garment and user modeling. In ACM Multimedia. 302--310.
[7]
Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters, Vol. 27, 8 (2006), 861--874.
[8]
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In Twenty-Sixth International Joint Conference on Artificial Intelligence .
[9]
Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S Davis. 2017. Learning fashion compatibility with bidirectional lstms. In Proceedings of the 25th ACM international conference on Multimedia. 1078--1086.
[10]
Xintong Han, Zuxuan Wu, Zhe Wu, Ruichi Yu, and Larry S Davis. 2018. Viton: An image-based virtual try-on network. In Proceedings of the IEEE conference on computer vision and pattern recognition. 7543--7552.
[11]
Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In proceedings of the 25th international conference on world wide web. 507--517.
[12]
Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting clicks on ads at facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising. 1--9.
[13]
Jia Jia, Jie Huang, Guangyao Shen, Tao He, Zhiyuan Liu, Huanbo Luan, and Chao Yan. 2016. Learning to appreciate the aesthetic effects of clothing. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.
[14]
Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware factorization machines for CTR prediction. In Proceedings of the 10th ACM conference on recommender systems. 43--50.
[15]
Kuang-chih Lee, Burkay Orten, Ali Dasdan, and Wentong Li. 2012. Estimating conversion rate in display advertising from past performance data. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. 768--776.
[16]
Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1754--1763.
[17]
Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang. 2019. Feature generation by convolutional neural network for click-through rate prediction. In The World Wide Web Conference. 1119--1129.
[18]
Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li, and Yong Yu. 2020. Autofis: Automatic feature interaction selection in factorization models for click-through rate prediction. In KDD .
[19]
Si Liu, Jiashi Feng, Zheng Song, Tianzhu Zhang, Hanqing Lu, Changsheng Xu, and Shuicheng Yan. 2012. Hi, magic closet, tell me what to wear!. In Proceedings of the 20th ACM international conference on Multimedia. 619--628.
[20]
Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. 2015. Image-based recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval. 43--52.
[21]
Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun, and Quan Lu. 2018. Field-weighted factorization machines for click-through rate prediction in display advertising. In Proceedings of the 2018 World Wide Web Conference. 1349--1357.
[22]
Jiarui Qin, Weinan Zhang, Rong Su, Zhirong Liu, Weiwen Liu, Ruiming Tang, Xiuqiang He, and Yong Yu. 2021. Retrieval & Interaction Machine for Tabular Data Prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1379--1389.
[23]
Jiarui Qin, Weinan Zhang, Xin Wu, Jiarui Jin, Yuchen Fang, and Yong Yu. 2020. User behavior retrieval for click-through rate prediction. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2347--2356.
[24]
Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. 2016. Product-based neural networks for user response prediction. In 2016 IEEE 16th International Conference on Data Mining (ICDM). IEEE, 1149--1154.
[25]
Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo, Yong Yu, and Xiuqiang He. 2018. Product-based neural networks for user response prediction over multi-field categorical data. ACM TOIS (2018), 1--35.
[26]
Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference on data mining. IEEE, 995--1000.
[27]
Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of the 16th international conference on World Wide Web. 521--530.
[28]
Xuemeng Song, Fuli Feng, Jinhuan Liu, Zekun Li, Liqiang Nie, and Jun Ma. 2017. Neurostylist: Neural compatibility modeling for clothing matching. In Proceedings of the 25th ACM international conference on Multimedia. 753--761.
[29]
Xuehan Sun, Tianyao Shi, Xiaofeng Gao, Yanrong Kang, and Guihai Chen. 2021. FORM: Follow the Online Regularized Meta-Leader for Cold-Start Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1177--1186.
[30]
Andreas Veit, Balazs Kovacs, Sean Bell, Julian McAuley, Kavita Bala, and Serge Belongie. 2015. Learning visual clothing style with heterogeneous dyadic co-occurrences. In Proceedings of the IEEE International Conference on Computer Vision. 4642--4650.
[31]
Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network for ad click predictions. In Proceedings of the ADKDD'17. 1--7.
[32]
Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. 2017. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks. In IJCAI .
[33]
Cong Yu, Yang Hu, Yan Chen, and Bing Zeng. 2019. Personalized fashion design. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 9046--9055.
[34]
Weinan Zhang, Tianming Du, and Jun Wang. 2016. Deep learning over multi-field categorical data. In European conference on information retrieval. Springer, 45--57.
[35]
Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep interest evolution network for click-through rate prediction. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 5941--5948.
[36]
Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through rate prediction. In KDD. 1059--1068.
[37]
Xingxing Zou, Xiangheng Kong, Waikeung Wong, Congde Wang, Yuguang Liu, and Yang Cao. 2019. Fashionai: A hierarchical dataset for fashion understanding. In CVPR Workshops .

Cited By

View all

Index Terms

  1. Combo-Fashion: Fashion Clothes Matching CTR Prediction with Item History

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    KDD '22: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
    August 2022
    5033 pages
    ISBN:9781450393850
    DOI:10.1145/3534678
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 14 August 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. click-through prediction
    2. fashion recommendation
    3. item matching
    4. recommender system

    Qualifiers

    • Research-article

    Funding Sources

    • New Generation of AI 2030
    • Shanghai Municipal Science and Technology Major Project
    • Alibaba Innovation Research

    Conference

    KDD '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

    Upcoming Conference

    KDD '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)138
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 23 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media