skip to main content
10.1145/3531130.3532488acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

A Functorial Excursion Between Algebraic Geometry and Linear Logic

Published: 04 August 2022 Publication History

Abstract

The language of Algebraic Geometry combines two complementary and dependent levels of discourse: on the geometric side, schemes define spaces of the same cohesive nature as manifolds ; on the vectorial side, every scheme X comes equipped with a symmetric monoidal category of quasicoherent modules, which may be seen as generalised vector bundles on the scheme X. In this paper, we use the functor of points approach to Algebraic Geometry developed by Grothendieck in the 1970s to establish that every covariant presheaf X on the category of commutative rings — and in particular every scheme X — comes equipped “above it” with a symmetric monoidal closed category PshModX of presheaves of modules. This category PshModX defines moreover a model of intuitionistic linear logic, whose exponential modality is obtained by glueing together in an appropriate way the Sweedler dual construction on ring algebras.

References

[1]
Matthieu Anel and André Joyal. 2013. Sweedler theory of (co)algebras and the bar-cobar constructions. (2013). https://arxiv.org/abs/1309.6952.
[2]
Michael Barr. 1974. Coalgebras over a commutative ring. Journal of Algebra 32, 3 (Dec. 1974), 600–610.
[3]
Nick Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models. In Computer Science Logic, 8th International Workshop, CSL ’94(Lecture Notes in Computer Science, Vol. 933). Springer Verlag.
[4]
James Clift and Daniel Murfet. 2017. Cofree coalgebras and differential linear logic. (2017). https://arxiv.org/abs/1701.01285.
[5]
Michel Demazure and Peter Gabriel. 1980. Introduction to Algebraic Geometry and Algebraic Groups. Mathematics Studies, Vol. 39. North Holland.
[6]
Jean Dieudonné. 1972. The Historical Development of Algebraic Geometry. The American Mathematical Monthly 79, 8 (October 1972), 827–866.
[7]
Thomas Ehrhard. 2018. An introduction to Differential Linear Logic: proof-nets, models and antiderivatives. Mathematical Structures in Computer Science 28, 7 (2018), 995–1060.
[8]
David Eisenbud and Joe Harris. 1991. The Geometry of Schemes. Number 197 in Graduate Texts in Mathematics. Springer Verlag.
[9]
Barbara Fantechi, Lothar Götsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli. 2005. Fundamental Algebraic Geometry. Mathematical Surveys and Monographs, Vol. 123. American Mathematical Society.
[10]
Halvard Fausk, Po Hu, and J. Peter May. 2003. Isomorphisms between left and right adjoints. Theory and Applications of Categories 11 (2003), 107–131.
[11]
Alexander Grothendieck. 1960. Eléments de Géométrie Algébrique. Publications de l’Institut des Hautes Etudes Scientifiques 4 (1960), 5–228.
[12]
Alexander Grothendieck. 1971. Revêtements étales et Groupe Fondamental. Lecture Notes in Mathematics, Vol. 224. Springer Verlag.
[13]
Alexander Grothendieck. 1972. Théorie des topos et cohomologie étale des schémas. Vol. 269. Springer Verlag.
[14]
Robin Hartshorne. 1977. Algebraic Geometry. Graduate Texts in Mathematics, Vol. 1977. Springer Verlag.
[15]
Mitsuyasu Hashimoto. 2009. Equivariant Twisted Inverses. In Foundations of Grothendieck Duality for Diagrams of Schemes(Lecture Notes in Mathematics, Vol. 1960). Springer Verlag, 261–418.
[16]
Martin Hyland, Ignacio Lopez Franco, and Christina Vasilakopoulou. 2017. Hopf measuring comonoids and enrichment. Proc. London Mathematical Society 3, 115 (2017), 1118–1148.
[17]
Martin Hyland and Andrea Schalk. 2003. Glueing and orthogonality for models of linear logic. Theoretical Computer Science 294 (2003), 183–231.
[18]
Luc Illusie. 1971. Théorie des Intersections et Théorème de Riemann-Roch. Vol. 225. Springer Verlag, Chapter Existence de résolutions globales, 160–222.
[19]
Anders Kock. 2015. The dual fibration in elementary terms. (2015). https://arxiv.org/abs/1501.01947.
[20]
Maxim Kontsevich and Alexander Rosenberg. 2004. Noncommutative stacks. Technical Report. Max-Planck Institute for Mathematics.
[21]
Joseph Lipman. 2009. Notes on Derived Functors and Grothendieck Duality. In Foundations of Grothendieck Duality for Diagrams of Schemes(Lecture Notes in Mathematics, Vol. 1960). Springer Verlag, 1–259.
[22]
Jacob Lurie. 2004. Derived algebraic geometry. Ph. D. Dissertation. Massachusetts Institute of Technology.
[23]
Saunders Mac Lane and Ieke Moerdijk. 1992. Sheaves in Geometry and Logic. Springer Verlag.
[24]
Philippe Malbos. 2020. Two algebraic byways from differential equations: Gröbner bases and quivers. Vol. 28. Springer, Chapter Noncommutative linear rewriting: applications and generalizations.
[25]
Paul-André Melliès. 2009. Categorical semantics of linear logic. Number 27 in Panoramas et Synthèses. Société Mathématique de France, 1 – 196.
[26]
Paul-André Melliès and Noam Zeilberger. 2015. Functors are Type Refinement Systems. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
[27]
Paul-André Melliès and Noam Zeilberger. 2016. A bifibrational reconstruction of Lawvere’s presheaf hyperdoctrine. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, New York, NY, USA, July 5-8, 2016.
[28]
Archana S. Morye. 2012. Note on the Serre-Swan theorem. Mathematische Nachrichten(2012).
[29]
Daniel Murfet. 2015. On Sweedler’s cofree cocommutative coalgebra. Journal of Pure and Applied Algebra 219, 12 (2015).
[30]
nLab entry on modules.2020. https://ncatlab.org/nlab/show/module
[31]
Hans-E. Porst. 2015. The Formal Theory of Hopf Algebras, Part I. Quaestiones Mathematicae 38 (2015), 631–682.
[32]
Hans-E. Porst and Ross Street. 2016. Generalizations of the Sweedler Dual. Applied Categorical Structures 24 (2016), 619–647.
[33]
Urs Schreiber. 2014. Quantization via Linear homotopy types. arxiv:1402.7041 [math-ph]
[34]
Jean-Pierre Serre. 1955. Faisceaux algébriques cohérents”. Annals of Mathematics 61, 2 (1955), 197–278.
[35]
Thomas Streicher. 1999. Fibered Categories à la Jean Bénabou. (1999). https://arxiv.org/pdf/1801.02927.pdf.
[36]
Moss E. Sweedler. 1969. Hopf Algebras. W. A. Benjamin, Inc., New York.
[37]
Leovigildo Alonso Tarrio, Ana Jeremias Lòpez, Marta Pérez Rodríguez, and Maria J. Vale Gonsalves. 2008. The derived category of quasi-coherent sheaves and axiomatic stable homotopy. Advances in Mathematics 218, 4 (2008), 1224–1252.
[38]
Bertrand Toën. 2014. Derived Algebraic Geometry. EMS Surveys in Mathematical Sciences 1, 2 (2014), 153–240.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
LICS '22: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science
August 2022
817 pages
ISBN:9781450393515
DOI:10.1145/3531130
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 August 2022

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

LICS '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 215 of 622 submissions, 35%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)33
  • Downloads (Last 6 weeks)20
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media