skip to main content
10.1145/3522784.3522788acmotherconferencesArticle/Chapter ViewAbstractPublication PagesrapidoConference Proceedingsconference-collections
research-article

Bio-inspired monocular drone SLAM

Published: 23 June 2022 Publication History

Abstract

Drone navigation in GPS-denied, indoor environments, is still a challenging problem. As drones can perceive the environment from a richer set of viewpoints, simultaneous localization and mapping (SLAM) becomes more complex, while having stringent compute and energy constraints. To tackle that problem, this research displays a biologically inspired deep-learning algorithm for monocular SLAM on a drone platform. We propose an unsupervised representation learning method that yields low-dimensional latent state descriptors, that mitigates the sensitivity to perceptual aliasing, and works on power-efficient, embedded hardware. We compare our method against ORB-SLAM3, and showcase increased robustness and an order of magnitude lower memory overhead.

References

[1]
P. Araújo, R. Miranda, D. Carmo, R. Alves, and L. Oliveira. 2017. Air-SSLAM: A Visual Stereo Indoor SLAM for Aerial Quadrotors. IEEE Geoscience and Remote Sensing Letters 14, 9 (2017), 1643–1647. https://doi.org/10.1109/LGRS.2017.2730883
[2]
H. Bavle, P. De La Puente, J. P. How, and P. Campoy. 2020. VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems. IEEE Access 8(2020), 60704–60718. https://doi.org/10.1109/ACCESS.2020.2983121
[3]
Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose Neira, Ian Reid, and John J. Leonard. 2016. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. Trans. Rob. 32, 6 (Dec. 2016), 1309–1332. https://doi.org/10.1109/TRO.2016.2624754
[4]
Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M. M. Montiel, and Juan D. Tardós. 2020. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM. CoRR abs/2007.11898(2020). arXiv:2007.11898
[5]
Ozan Çatal, Wouter Jansen, Tim Verbelen, Bart Dhoedt, and Jan Steckel. 2021. LatentSLAM: unsupervised multi-sensor representation learning for localization and mapping. In IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ROBOT.2004.1307183
[6]
Yoonsuck Choe. 2013. Hebbian Learning. Springer New York, New York, NY, 1–5. https://doi.org/10.1007/978-1-4614-7320-6_672-1
[7]
Maksim Filipenko and Ilya Afanasyev. 2018. Comparison of Various SLAM Systems for Mobile Robot in an Indoor Environment. In 2018 International Conference on Intelligent Systems (IS). 400–407. https://doi.org/10.1109/IS.2018.8710464
[8]
Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, John O’Doherty, and Giovanni Pezzulo. 2016. Active inference and learning. Neuroscience & Biobehavioral Reviews 68 (2016), 862 – 879. https://doi.org/10.1016/j.neubiorev.2016.06.022
[9]
Gily Ginosar, Johnatan Aljadeff, Yoram Burak, Haim Sompolinsky, Liora Las, and Nachum Ulanovsky. 2021. Locally ordered representation of 3D space in the entorhinal cortex. Nature 596, 7872 (01 Aug 2021), 404–409. https://doi.org/10.1038/s41586-021-03783-x
[10]
S. J. Haddadi and E. B. Castelan. 2018. Visual-Inertial Fusion for Indoor Autonomous Navigation of a Quadrotor Using ORB-SLAM. In Latin American Robotic Symposium. https://doi.org/10.1109/LARS/SBR/WRE.2018.00028
[11]
Dieter Jaeger and Ranu Jung (Eds.). 2015. Attractor Neural Network. Springer New York, New York, NY, 209–209. https://doi.org/10.1007/978-1-4614-6675-8_100038
[12]
Yohanes Khosiawan and Izabela Nielsen. 2016. A system of UAV application in indoor environment. Production & Manufacturing Research 4, 1 (2016), 2–22. https://doi.org/10.1080/21693277.2016.1195304
[13]
Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes.CoRR abs/1312.6114(2013).
[14]
Friso H. Kingma, Pieter Abbeel, and Jonathan Ho. 2019. Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). 3408–3417.
[15]
M. J. Milford, G. F. Wyeth, and D. Prasser. 2004. RatSLAM: a hippocampal model for simultaneous localization and mapping. In IEEE International Conference on Robotics and Automation (ICRA), Vol. 1. https://doi.org/10.1109/ROBOT.2004.1307183
[16]
H. D. K. Motlagh, F. Lotfi, H. D. Taghirad, and S. B. Germi. 2019. Position Estimation for Drones based on Visual SLAM and IMU in GPS-denied Environment. In 2019 7th International Conference on Robotics and Mechatronics (ICRoM). https://doi.org/10.1109/ICRoM48714.2019.9071826
[17]
RP Rao and DH Ballard. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature neuroscience 2, 1 (January 1999), 79—87. https://doi.org/10.1038/4580
[18]
Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In Proceedings of the 31st International Conference on Machine Learning (ICML), Vol. 32.
[19]
Ozan Çatal, Tim Verbelen, Toon Van de Maele, Bart Dhoedt, and Adam Safron. 2021. Robot navigation as hierarchical active inference. Neural Networks 142(2021), 192–204. https://doi.org/10.1016/j.neunet.2021.05.010

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
DroneSE and RAPIDO: System Engineering for constrained embedded systems
January 2022
58 pages
ISBN:9781450395663
DOI:10.1145/3522784
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 June 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. drones
  2. neural networks
  3. slam

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • FWO

Conference

DroneSE and RAPIDO '22

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)40
  • Downloads (Last 6 weeks)5
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media