skip to main content
10.1145/3519270.3538440acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
research-article
Open access

Distributed Edge Coloring in Time Polylogarithmic in Δ

Published: 21 July 2022 Publication History

Abstract

We provide new deterministic algorithms for the edge coloring problem, which is one of the classic and highly studied distributed local symmetry breaking problems. As our main result, we show that a (2Δ - 1)-edge coloring can be computed in time poly log Δ + O(log* n) in the LOCAL model. This improves a result of Balliu, Kuhn, and Olivetti [PODC '20], who gave an algorithm with a quasi-polylogarithmic dependency on Δ. We further show that in the CONGEST model, an (8 + ε)Δ-edge coloring can be computed in poly log Δ + O(log* n) rounds. The best previous O(Δ)-edge coloring algorithm that can be implemented in the CONGEST model is by Barenboim and Elkin [PODC '11] and it computes a 2O(1/ε)Δ- edge coloring in time O(Δε + log* n) for any ε ∈ (0, 1].

Supplementary Material

MP4 File (S1-T2.mp4)
Presentation video

References

[1]
Noga Alon, László Babai, and Alon Itai. 1986. A fast and simple randomized parallel algorithm for the maximal independent set problem. Journal of Algorithms 7, 4 (1986), 567--583. https://doi.org/10.1016/0196--6774(86)90019--2
[2]
Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. 1989. Network Decomposition and Locality in Distributed Computation. In Proc. 30th Symp. on Foundations of Computer Science (FOCS). 364--369. https: //doi.org/10.1109/SFCS.1989.63504
[3]
Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka Suomela. 2019. Lower Bounds for Maximal Matchings and Maximal Independent Sets. In Proc. 60th IEEE Symp. on Foundations of Computer Science (FOCS). 481--497.
[4]
Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. 2021. Distributed -Coloring Plays Hide-and-Seek. arXiv preprint arXiv:2110.00643 (2021).
[5]
Alkida Balliu, Fabian Kuhn, and Dennis Olivetti. 2020. Distributed Edge Coloring in Time Quasi-Polylogarithmic in Delta. In Proc. 39th ACM Symp. on Principles of Distributed Computing (PODC). 289--298.
[6]
Leonid Barenboim. 2016. Deterministic (+1)-Coloring in Sublinear (in ) Time in Static, Dynamic, and Faulty Networks. Journal of ACM 63, 5 (2016), 1--22. https://doi.org/10.1145/2979675
[7]
Leonid Barenboim and Michael Elkin. 2010. Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition. Distributed Comput. 22 (2010), 363--379. https://doi.org/10.1007/s00446-009-0088--2
[8]
Leonid Barenboim and Michael Elkin. 2011. Deterministic Distributed Vertex Coloring in Polylogarithmic Time. Journal of ACM 58 (2011), 23:1--23:25. https: //doi.org/10.1145/2027216.2027221
[9]
Leonid Barenboim and Michael Elkin. 2013. Distributed Graph Coloring: Fundamentals and Recent Developments. Morgan & Claypool Publishers. https: //doi.org/10.2200/S00520ED1V01Y201307DCT011
[10]
Leonid Barenboim, Michael Elkin, and Uri Goldenberg. 2018. Locally-Iterative Distributed ( + 1)-Coloring below Szegedy-Vishwanathan Barrier, and Applications to Self-Stabilization and to Restricted-Bandwidth Models. In Proc. 37th ACM Symp. on Principles of Distributed Computing (PODC). 437--446.
[11]
Leonid Barenboim, Michael Elkin, and Fabian Kuhn. 2014. Distributed (+1)- Coloring in Linear (in ) Time. SIAM J. Comput. 43, 1 (2014), 72--95. https: //doi.org/10.1137/12088848X
[12]
Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016. The Locality of Distributed Symmetry Breaking. J. ACM 63, 3 (2016), 1--45. https://doi.org/10.1145/2903137
[13]
Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, and Jara Uitto. 2016. A lower bound for the distributed Lovász local lemma. In Proc. 48th ACM Symp. on Theory of Computing (STOC). 479--488. https://doi.org/10.1145/2897518.2897570
[14]
Sebastian Brandt, Barbara Keller, Joel Rybicki, Jukka Suomela, and Jara Uitto. 2021. Efficient Load-Balancing through Distributed Token Dropping. In Proc. 33rd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA). 129--139.
[15]
Sebastian Brandt and Dennis Olivetti. 2020. Truly Tight-in- Bounds for Bipartite Maximal Matching and Variants. In Proc. 39th ACM Symp. on Principles of Distributed Computing (PODC). 69--78.
[16]
Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. 2019. An Exponential Separation between Randomized and Deterministic Complexity in the LOCAL Model. SIAM J. Comput. 48, 1 (2019), 122--143. https://doi.org/10.1137/17M1117537
[17]
Yi-Jun Chang, Wenzheng Li, and Seth Pettie. 2018. An optimal distributed (+1)- coloring algorithm?. In Proc. 50th ACM Symp. on Theory of Computing, (STOC). 445--456. https://doi.org/10.1145/3188745.3188964
[18]
Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. 2020. Distributed Edge Coloring and a Special Case of the Constructive Lovász Local Lemma. ACM Transactions on Algorithms 16, 1 (2020), 8:1--8:51. https: //doi.org/10.1145/3365004
[19]
Andrzej Czygrinow, Michal Hanckowiak, Edyta Szymanska, and Wojciech Wawrzyniak. 2016. On the distributed complexity of the semi-matching problem. J. Comput. Syst. Sci. 82, 8 (2016), 1251--1267.
[20]
Devdatt P. Dubhashi, David A. Grable, and Alessandro Panconesi. 1998. Near- Optimal, Distributed Edge Colouring via the Nibble Method. Theor. Comput. Sci. 203, 2 (1998), 225--251.
[21]
Michael Elkin, Seth Pettie, and Hsin-Hao Su. 2015. (2 - l)-Edge-Coloring is Much Easier than Maximal Matching in the Distributed Setting. In Proc. 26thACMSIAM Symp. on Discrete Algorithms (SODA). 355--370. https://doi.org/10.1137/1. 9781611973730.26
[22]
Manuela Fischer. 2017. Improved Deterministic Distributed Matching via Rounding. In Proc. 31st Symp. on Distributed Computing (DISC). 17:1--17:15.
[23]
Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. 2017. Deterministic Distributed Edge-Coloring via Hypergraph Maximal Matching. In Proc. 58th IEEE Symp. on Foundations of Computer Science (FOCS). 180--191. https://doi.org/10. 1109/FOCS.2017.25
[24]
Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. 2016. Local Conflict Coloring. In Proc. 57th IEEE Symp. on Foundations of Computer Science (FOCS). 625--634.
[25]
Mohsen Ghaffari. 2016. An Improved Distributed Algorithm for Maximal Independent Set. In Proc. 27th ACM-SIAM Symp. on Discrete Algorithms (SODA). 270--277. https://doi.org/10.1137/1.9781611974331.ch20
[26]
Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. 2021. Improved Deterministic Network Decomposition. In Proc. 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA). 2904--2923. https://doi.org/10.1137/1.9781611976465.173
[27]
Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. 2018. On Derandomizing Local Distributed Algorithms. In Proc. 59th Symp. on Foundations of Computer Science (FOCS). 662--673.
[28]
Mohsen Ghaffari and Fabian Kuhn. 2021. Deterministic Distributed Vertex Coloring: Simpler, Faster, and without Network Decomposition. In Proc. 62nd IEEE Symp. on Foundations of Computing (FOCS).
[29]
M. Ghaffari, F. Kuhn, and Y. Maus. 2017. On the Complexity of Local Distributed Graph Problems. In Proc. 49th ACM Symp. on Theory of Computing (STOC). 784-- 797.
[30]
Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. 2018. Deterministic distributed edge-coloring with fewer colors. In Proc. 50th ACM Symp. on Theory of Computing (STOC). 418--430.
[31]
A.V. Goldberg, S.A. Plotkin, and G.E. Shannon. 1988. Parallel Symmetry-Breaking in Sparse Graphs. SIAM Journal on Discrete Mathematics 1, 4 (1988), 434--446.
[32]
Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. 2021. Near-Optimal Distributed Degree+1 Coloring. CoRR abs/2112.00604 (2021).
[33]
Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. 1998. On the Distributed Complexity of Computing Maximal Matchings. In Proc. 9th ACMSIAM Symp. on Discrete Algorithms (SODA). 219--225.
[34]
Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. 1999. A Faster Distributed Algorithm for Computing Maximal Matchings Deterministically. In Proc. 18th ACM Symp. on Principles of Distributed Computing (PODC). 219--228.
[35]
David G. Harris. 2020. Distributed Local Approximation Algorithms for Maximum Matching in Graphs and Hypergraphs. SIAM J. Comput. 49, 4 (2020), 711--746. https://doi.org/10.1137/19M1279241
[36]
David G. Harris, Johannes Schneider, and Hsin-Hao Su. 2018. Distributed ( +1)-Coloring in Sublogarithmic Rounds. J. ACM 65, 4 (2018), 19:1--19:21.
[37]
Amos Israeli and A. Itai. 1986. A fast and simple randomized parallel algorithm for maximal matching. Inform. Process. Lett. 22, 2 (1986), 77--80. https://doi.org/ 10.1016/0020-0190(86)90144--4
[38]
Fabian Kuhn. 2009. Local Weak Coloring Algorithms and Implications on Deterministic Symmetry Breaking. In Proc. 21st ACM Symp. on Parallelism in Algorithms and Architectures (SPAA).
[39]
Fabian Kuhn. 2020. Faster Deterministic Distributed Coloring Through Recursive List Coloring. In Proc. 32st ACM-SIAM Symp. on Discrete Algorithms (SODA). 1244--1259.
[40]
Fabian Kuhn and Roger Wattenhofer. 2006. On the complexity of distributed graph coloring. In Proc. 25th ACM Symp. on Principles of Distributed Computing (PODC). 7--15.
[41]
Nathan Linial. 1987. Distributive graph algorithms -- Global solutions from local data. In Proc. 28th Symp. on Foundations of Computer Science (FOCS 1987). IEEE, 331--335. https://doi.org/10.1109/SFCS.1987.20
[42]
Michael Luby. 1986. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM J. Comput. 15, 4 (1986), 1036--1053. https://doi.org/10.1137/ 0215074
[43]
Yannic Maus and Tigran Tonoyan. 2020. Local Conflict Coloring Revisited: Linial for Lists. CoRR abs/2007.15251 (2020).
[44]
Alessandro Panconesi and Romeo Rizzi. 2001. Some simple distributed algorithms for sparse networks. Distributed Computing 14, 2 (2001), 97--100.
[45]
Alessandro Panconesi and Aravind Srinivasan. 1996. On the Complexity of Distributed Network Decomposition. Journal of Algorithms 20, 2 (1996), 356--374. https://doi.org/10.1006/jagm.1996.0017
[46]
Alessandro Panconesi and Aravind Srinivasan. 1997. Randomized Distributed Edge Coloring via an Extension of the Chernoff-Hoeffding Bounds. SIAM J. Comput. 26, 2 (1997), 350--368. https://doi.org/10.1137/S0097539793250767
[47]
David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719772
[48]
Václav Rozho? and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic Network Decomposition and Distributed Derandomization. In Proc. 52nd ACM Symp. on Theory of Computing (STOC). 350--363.
[49]
Johannes Schneider and Roger Wattenhofer. 2010. A new technique for distributed symmetry breaking. In Proc. 29th ACM Symp. on Principles of Distributed Computing (PODC). 257--266. https://doi.org/10.1145/1835698.1835760
[50]
Hsin-Hao Su and Hoa T. Vu. 2019. Towards the locality of Vizing's theorem. In Proc. 51st ACM Symp. on Theory of Computing (STOC). 355--364. https://doi.org/ 10.1145/3313276.3316393
[51]
Mario Szegedy and Sundar Vishwanathan. 1993. Locality based graph coloring. In Proc. 25th ACM Symp. on Theory of Computing (STOC). 201--207.

Cited By

View all

Index Terms

  1. Distributed Edge Coloring in Time Polylogarithmic in Δ

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    PODC'22: Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing
    July 2022
    509 pages
    ISBN:9781450392624
    DOI:10.1145/3519270
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 July 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. congest model
    2. edge coloring
    3. local model
    4. token dropping

    Qualifiers

    • Research-article

    Conference

    PODC '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 740 of 2,477 submissions, 30%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)118
    • Downloads (Last 6 weeks)14
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media