skip to main content
10.1145/3473856.3473880acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmundcConference Proceedingsconference-collections
research-article

Stay on Course in VR: Comparing the Precision of Movement between Gamepad, Armswinger, and Treadmill: Kurs halten in VR: Vergleich der Bewegungspräzision von Gamepad, Armswinger und Laufstall

Published: 13 September 2021 Publication History

Abstract

In diesem Beitrag wird untersucht, inwieweit verschiedene Formen von Fortbewegungstechniken in Virtual Reality Umgebungen Einfluss auf die Präzision bei der Interaktion haben. Dabei wurden insgesamt drei Techniken untersucht: Zwei der Techniken integrieren dabei eine körperliche Aktivität, um einen hohen Grad an Realismus in der Bewegung zu erzeugen (Armswinger, Laufstall). Als dritte Technik wurde ein Gamepad als Baseline herangezogen. In einer Studie mit 18 Proband:innen wurde die Präzision dieser drei Fortbewegungstechniken über sechs unterschiedliche Hindernisse in einem VR-Parcours untersucht. Die Ergebnisse zeigen, dass für einzelne Hindernisse, die zum einen eine Kombination aus Vorwärts- und Seitwärtsbewegung erfordern (Slalom, Klippe) sowie auf Geschwindigkeit abzielen (Schiene), der Laufstall eine signifikant präzisere Steuerung ermöglicht als der Armswinger. Auf den gesamten Parcours gesehen ist jedoch kein Eingabegerät signifikant präziser als ein anderes. Die Benutzung des Laufstalls benötigt zudem signifikant mehr Zeit als Gamepad und Armswinger. Ebenso zeigte sich, dass das Ziel, eine reale Laufbewegung 1:1 abzubilden, auch mit einem Laufstall nach wie vor nicht erreicht wird, die Bewegung aber dennoch als intuitiv und immersiv wahrgenommen wird.

References

[1]
Jonas Auda, Max Pascher, and Stefan Schneegass. 2019. Around the (Virtual) World: Infinite Walking in Virtual Reality Using Electrical Muscle Stimulation. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/3290605.3300661
[2]
Costas Boletsis. 2017. The New Era of Virtual Reality Locomotion: A Systematic Literature Review of Techniques and a Proposed Typology. Multimodal Technologies and Interaction 1, 4 (2017). https://doi.org/10.3390/mti1040024
[3]
Tuncay Cakmak and Holger Hager. 2014. Cyberith virtualizer: a locomotion device for virtual reality. In ACM SIGGRAPH 2014 Emerging Technologies(SIGGRAPH ’14). Association for Computing Machinery, New York, NY, USA, 1. https://doi.org/10.1145/2614066.2614105
[4]
Davide Calandra, Fabrizio Lamberti, and Massimo Migliorini. 2019. On the Usability of Consumer Locomotion Techniques in Serious Games: Comparing Arm Swinging, Treadmills and Walk-in-Place. In 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). 348–352. https://doi.org/10.1109/ICCE-Berlin47944.2019.8966165
[5]
Kevin Carbotte. 2018. Natural Locomotion Application Enables Arm Swinger Locomotion In VR Games (Hands-On). tom’sHardware. https://www.tomshardware.com/news/natural-locomotion-application-arm-swinger,36891.html
[6]
Noah Coomer, Sadler Bullard, William Clinton, and Betsy Williams. 2018. Evaluating the effects of four VR locomotion methods: joystick, arm-cycling, point-tugging, and teleporting. 1–8. https://doi.org/10.1145/3225153.3225175
[7]
HTC Corporation. 2021. The professional-grade VR headset: VIVE Pro. https://www.vive.com/us/product/vive-pro/
[8]
HTC Corporation. 2021. VIVE Tracker (3.0). https://www.vive.com/de/accessory/tracker3/
[9]
Cyberith. 2021. 2nd Gen VR Treadmill - Cyberith Virtualizer ELITE 2 | Cyberith Virtualizer. https://www.cyberith.com/virtualizer-elite/
[10]
Joe Durbin. 2016. ArmSwinger is an Open Source VR Locomotion System Releasing This Week. Upload. https://uploadvr.com/armswinger-locomotion-system-vr/
[11]
Epic Games. [n.d.]. Unreal Engine. https://www.unrealengine.com
[12]
Sarah Faltaous and Stefan Schneegass. 2020. HCI Model: A Proposed Extension to Human-Actuation Technologies. In 19th International Conference on Mobile and Ubiquitous Multimedia (Essen, Germany) (MUM 2020). Association for Computing Machinery, New York, NY, USA, 306–308. https://doi.org/10.1145/3428361.3432081
[13]
Jann Philipp Freiwald, Oscar Ariza, Omar Janeh, and Frank Steinicke. 2020. Walking by Cycling: A Novel In-Place Locomotion User Interface for Seated Virtual Reality Experiences. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376574
[14]
Markus Funk, Florian Müller, Marco Fendrich, Megan Shene, Moritz Kolvenbach, Niclas Dobbertin, Sebastian Günther, and Max Mühlhäuser. 2019. Assessing the Accuracy of Point & Teleport Locomotion with Orientation Indication for Virtual Reality Using Curved Trajectories. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300377
[15]
H. Iwata. 1999. The Torus Treadmill: realizing locomotion in VEs. IEEE Computer Graphics and Applications 19, 6 (1999), 30–35. https://doi.org/10.1109/38.799737
[16]
Keller (Kjack). [n.d.]. Armswinger. https://github.com/kjack9/ArmSwinger
[17]
E. Langbehn, P. Lubos, G. Bruder, and F. Steinicke. 2017. Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR. IEEE Transactions on Visualization and Computer Graphics 23, 4(2017), 1389–1398. https://doi.org/10.1109/TVCG.2017.2657220
[18]
Eike Langbehn, Paul Lubos, and Frank Steinicke. 2018. Evaluation of Locomotion Techniques for Room-Scale VR: Joystick, Teleportation, and Redirected Walking. In Proceedings of the Virtual Reality International Conference - Laval Virtual (Laval, France) (VRIC ’18). Association for Computing Machinery, New York, NY, USA, Article 4, 9 pages. https://doi.org/10.1145/3234253.3234291
[19]
Eike Langbehn, Frank Steinicke, Markus Lappe, Gregory F. Welch, and Gerd Bruder. 2018. In the Blink of an Eye: Leveraging Blink-Induced Suppression for Imperceptible Position and Orientation Redirection in Virtual Reality. ACM Trans. Graph. 37, 4, Article 66 (July 2018), 11 pages. https://doi.org/10.1145/3197517.3201335
[20]
Sebastian Marwecki and Patrick Baudisch. 2018. Scenograph: Fitting Real-Walking VR Experiences into Various Tracking Volumes. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology(Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 511–520. https://doi.org/10.1145/3242587.3242648
[21]
Microsoft. 2021. Introducing Microsoft Mesh: Here can be anywhere.https://www.microsoft.com/en-us/mesh
[22]
Microsoft. 2021. Kabelgebundene und Wireless Controller für Xbox 360. https://support.xbox.com/help/xbox-360/accessories/controllers
[23]
Mahdi Nabiyouni, Ayshwarya Saktheeswaran, Doug A. Bowman, and Ambika Karanth. 2015. Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. In 2015 IEEE Symposium on 3D User Interfaces (3DUI). 3–10. https://doi.org/10.1109/3DUI.2015.7131717
[24]
Niels Christian Nilsson, Stefania Serafin, Frank Steinicke, and Rolf Nordahl. 2018. Natural Walking in Virtual Reality: A Review. Comput. Entertain. 16, 2, Article 8 (April 2018), 22 pages. https://doi.org/10.1145/3180658
[25]
Yun Suen Pai and Kai Kunze. 2017. Armswing: Using Arm Swings for Accessible and Immersive Navigation in AR/VR Spaces. In Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia (Stuttgart, Germany) (MUM ’17). Association for Computing Machinery, New York, NY, USA, 189–198. https://doi.org/10.1145/3152832.3152864
[26]
Ken Pfeuffer, Benedikt Mayer, Diako Mardanbegi, and Hans Gellersen. 2017. Gaze + Pinch Interaction in Virtual Reality. In Proceedings of the 5th Symposium on Spatial User Interaction (Brighton, United Kingdom) (SUI ’17). Association for Computing Machinery, New York, NY, USA, 99–108. https://doi.org/10.1145/3131277.3132180
[27]
Sharif Razzaque. 2005. Redirected Walking. Ph.D. Dissertation. USA. Advisor(s) Brooks, Fredrick P. AAI3190299.
[28]
Roy A. Ruddle, Ekaterina Volkova, and Heinrich H. Bülthoff. 2011. Walking improves your cognitive map in environments that are large-scale and large in extent. ACM Transactions on Computer-Human Interaction 18, 2 (July 2011), 10:1–10:20. https://doi.org/10.1145/1970378.1970384
[29]
P. Schmitz, J. Hildebrandt, A. C. Valdez, L. Kobbelt, and M. Ziefle. 2018. You Spin my Head Right Round: Threshold of Limited Immersion for Rotation Gains in Redirected Walking. IEEE Transactions on Visualization and Computer Graphics 24, 4(2018), 1623–1632. https://doi.org/10.1109/TVCG.2018.2793671
[30]
Mel Slater, Martin Usoh, and Anthony Steed. 1995. Taking Steps: The Influence of a Walking Technique on Presence in Virtual Reality. ACM Trans. Comput.-Hum. Interact. 2, 3 (Sept. 1995), 201–219. https://doi.org/10.1145/210079.210084
[31]
Spatial. 2016. Spatial. https://spatial.io/
[32]
Frank Steinicke, Gerd Bruder, Jason Jerald, Harald Frenz, and Markus Lappe. 2009. Estimation of Detection Thresholds for Redirected Walking Techniques(1). IEEE, IEEE Transactions on Visualization and Computer Graphics. https://ieeexplore.ieee.org/abstract/document/5072212
[33]
Richard Stoakley, Matthew J. Conway, and Randy Pausch. 1995. Virtual Reality on a WIM: Interactive Worlds in Miniature. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’95). ACM Press/Addison-Wesley Publishing Co., USA, 265–272. https://doi.org/10.1145/223904.223938
[34]
Evan A. Suma, Zachary Lipps, Samantha Finkelstein, David M. Krum, and Mark Bolas. 2012. Impossible Spaces: Maximizing Natural Walking in Virtual Environments with Self-Overlapping Architecture. IEEE Transactions on Visualization and Computer Graphics 18, 4 (April 2012), 555–564. https://doi.org/10.1109/TVCG.2012.47
[35]
Synty. 2021. Synty Store: POLYGON - Western Pack. https://syntystore.com/products/polygon-western-pack
[36]
James N. Templeman, Patricia S. Denbrook, and Linda E. Sibert. 1999. Virtual Locomotion: Walking in Place through Virtual Environments. Presence: Teleoperators and Virtual Environments 8, 6 (12 1999), 598–617. https://doi.org/10.1162/105474699566512 arXiv:https://direct.mit.edu/pvar/article-pdf/8/6/598/1623326/105474699566512.pdf
[37]
Martin Usoh, Kevin Arthur, Mary C. Whitton, Rui Bastos, Anthony Steed, Mel Slater, and Frederick P. Brooks. 1999. Walking > walking-in-place > flying, in virtual environments. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques(SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., USA, 359–364. https://doi.org/10.1145/311535.311589
[38]
K. Vasylevska and H. Kaufmann. 2017. Towards efficient spatial compression in self-overlapping virtual environments. In 2017 IEEE Symposium on 3D User Interfaces (3DUI). 12–21. https://doi.org/10.1109/3DUI.2017.7893312
[39]
K. Vasylevska, H. Kaufmann, M. Bolas, and E. A. Suma. 2013. Flexible spaces: Dynamic layout generation for infinite walking in virtual environments. In 2013 IEEE Symposium on 3D User Interfaces (3DUI). 39–42. https://doi.org/10.1109/3DUI.2013.6550194
[40]
Julius von Willich, Martin Schmitz, Florian Müller, Daniel Schmitt, and Max Mühlhäuser. 2020. Podoportation: Foot-Based Locomotion in Virtual Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376626
[41]
Preston Tunnell Wilson, William Kalescky, Ansel MacLaughlin, and Betsy Williams. 2016. VR locomotion: walking \textgreater walking in place \textgreater arm swinging. In Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1(VRCAI ’16). Association for Computing Machinery, Zhuhai, China, 243–249. https://doi.org/10.1145/3013971.3014010
[42]
Bob G. Witmer and Paul B. Kline. 1998. Judging Perceived and Traversed Distance in Virtual Environments. Presence: Teleoper. Virtual Environ. 7, 2 (April 1998), 144–167. https://doi.org/10.1162/105474698565640
[43]
Dennis Wolf, Katja Rogers, Christoph Kunder, and Enrico Rukzio. 2020. JumpVR: Jump-Based Locomotion Augmentation for Virtual Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376243

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
MuC '21: Proceedings of Mensch und Computer 2021
September 2021
613 pages
ISBN:9781450386456
DOI:10.1145/3473856
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 September 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Armswinger
  2. Fortbewegung
  3. Gamepad
  4. Laufstall
  5. Natural Locomotion
  6. Präzision
  7. Treadmill
  8. Virtual Reality

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

MuC '21
MuC '21: Mensch und Computer 2021
September 5 - 8, 2021
Ingolstadt, Germany

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 101
    Total Downloads
  • Downloads (Last 12 months)27
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media