skip to main content
10.1145/3461702.3462629acmconferencesArticle/Chapter ViewAbstractPublication PagesaiesConference Proceedingsconference-collections
research-article
Open access

Fair Bayesian Optimization

Published: 30 July 2021 Publication History

Abstract

Given the increasing importance of machine learning (ML) in our lives, several algorithmic fairness techniques have been proposed to mitigate biases in the outcomes of the ML models. However, most of these techniques are specialized to cater to a single family of ML models and a specific definition of fairness, limiting their adaptibility in practice. We introduce a general constrained Bayesian optimization (BO) framework to optimize the performance of any ML model while enforcing one or multiple fairness constraints. BO is a model-agnostic optimization method that has been successfully applied to automatically tune the hyperparameters of ML models. We apply BO with fairness constraints to a range of popular models, including random forests, gradient boosting, and neural networks, showing that we can obtain accurate and fair solutions by acting solely on the hyperparameters. We also show empirically that our approach is competitive with specialized techniques that enforce model-specific fairness constraints, and outperforms preprocessing methods that learn fair representations of the input data. Moreover, our method can be used in synergy with such specialized fairness techniques to tune their hyperparameters. Finally, we study the relationship between fairness and the hyperparameters selected by BO. We observe a correlation between regularization and unbiased models, explaining why acting on the hyperparameters leads to ML models that generalize well and are fair.

Supplementary Material

ZIP File (aiespp275aux.zip)
This supplementary material contains a pdf file with Appendix A and Appendix B of the paper titled "Fair Bayesian Optimization". It includes additional details on the experimental setup and more experiments, as referenced in the main text.

References

[1]
GPyOpt: A Bayesian optimization framework in Python. http://github.com/SheffieldML/GPyOpt, 2016.
[2]
A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach. A reductions approach to fair classification. ICML, 2018.
[3]
A. Agarwal, M. Dudik, and Z. S. Wu. Fair regression: Quantitative definitions and reduction-based algorithms. ICML, 2019.
[4]
J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. ProPublica, 2016.
[5]
S. Barocas, M. Hardt, and A. Narayanan. Fairness and machine learning. URL: www.fairmlbook.org, 2018.
[6]
T. Bolukbasi, K. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. NeurIPS, 2016.
[7]
E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical report, preprint arXiv:1012.2599, 2010.
[8]
J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. FAT*, 2018.
[9]
T. Calders, F. Kamiran, and M. Pechenizkiy. Building classifiers with independency constraints. IEEE ICDM, 2009.
[10]
A. Caliskan, J. J. Bryson, and A. Narayanan. Semantics derived automatically from language corpora contain human-like biases. Science, 2017.
[11]
F. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R. Varshney. Optimized pre-processing for discrimination prevention. NeurIPS, 2017.
[12]
L. E. Celis, D. Straszak, and N. K. Vishnoi. Ranking with fairness constraints. ICALP, 2018.
[13]
J. Chakraborty, S. Majumder, Z. Wu, and T. Menzies. Fairway: SE principles for building fairer software. arXiv:2003.10354, 2020.
[14]
J. Chakraborty, T. Xia, F. M. Fahid, and T. Menzies. Software engineering for fairness: A case study with hyperparameter optimization. arXiv:1905.05786, 2019.
[15]
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002.
[16]
T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. ACM SIGKDD, 2016.
[17]
S. Chiappa and W. S. Isaac. A causal bayesian networks viewpoint on fairness. arXiv:1907.06430, 2019.
[18]
A. F. Cruz, P. Saleiro, C. Belé m, C. Soares, and P. Bizarro. A bandit-based algorithm for fairness-aware hyperparameter optimization. arXiv:2010.03665, 2020.
[19]
C. Dimitrakakis, Y. Liu, C. D. Parkes, and G. Radanovic. Bayesian Fairness. AAAI, pages 509--516, 2019.
[20]
M. Donini, L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil. Empirical risk minimization under fairness constraints. NeurIPS, 2018.
[21]
D. Dua and C. Graff. UCI machine learning repository, 2017.
[22]
C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. Fairness through awareness. ITCS, 2012.
[23]
N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola. Autogluon-tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505, 2020.
[24]
M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying and removing disparate impact. ACM SIGKDD, 2015.
[25]
J. R. Foulds, R. Islam, K. N. Keya, and S. Pan. Bayesian Modeling of Intersectional Fairness: The Variance of Bias. 2020.
[26]
S. A. Friedler, C. Scheidegger, and S. Venkatasubramanian. On the (im)possibility of fairness. arXiv preprint arXiv:1609.07236, 2016.
[27]
S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary, E. P. Hamilton, and D. Roth. A comparative study of fairness-enhancing interventions in machine learning. FAT*, 2019.
[28]
J. Gardner, M. Kusner, Z. Xu, K. Weinberger, and J. Cunningham. Bayesian optimization with inequality constraints. ICML, 2014.
[29]
M. A. Gelbart, J. Snoek, and R. P. Adams. Bayesian optimization with unknown constraints. UAI, 2014.
[30]
D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. E. Karro, and D. Sculley. Google Vizier: A service for black-box optimization. KDD, 2017.
[31]
M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. NeurIPS, 2016.
[32]
P. Hennig and C. J. Schuler. Entropy search for information-efficient global optimization. JMLR, 2012.
[33]
J. M. Herná ndez-Lobato, M. A. Gelbart, M. W. Hoffman, R. P. Adams, and Z. Ghahramani. Predictive entropy search for Bayesian optimization with unknown constraints. ICML, 2015.
[34]
F. Hutter, H. Hoos, and K. Leyton-Brown. An efficient approach for assessing hyperparameter importance. ICML, 2014.
[35]
S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, and A. Roth. Fairness in reinforcement learning. ICML, 2017.
[36]
D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998.
[37]
F. Kamiran and T. Calders. Data preprocessing techniques for classification without discrimination. KAIS, 2012.
[38]
T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. Fairness-aware classifier with prejudice remover regularizer. ECML PKDD, 2012.
[39]
K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R. Collins, J. Schneider, B. Poczos, and E. P. Xing. Tuning hyperparameters without grad students: Scalable and robust bayesian optimisation with dragonfly. Journal of Machine Learning Research, 21(81):1--27, 2020.
[40]
M. Kearns, S. Neel, and Z. S. Roth, A.and Wu. Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. 2018.
[41]
J. Kleinberg. Inherent trade-offs in algorithmic fairness. SIGMETRICS, 2018.
[42]
J. Knowles. Parego: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 10(1):50--66, 2006.
[43]
M. MacCarthy. Standards of fairness for disparate impact assessment of big data algorithms. Cumb. L. Rev., 48:67, 2017.
[44]
J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. Towards Global Optimization, 1978.
[45]
L. Oneto, M. Donini, M. Pontil, and J. Shawe-Taylor. Randomized learning and generalization of fair and private classifiers: From PAC-Bayes to stability and differential privacy. Neurocomputing, 2020.
[46]
B. Paria, K. Kandasamy, and B. Póczos. A flexible framework for multi-objective bayesian optimization using random scalarizations. In UAI, 2019.
[47]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. JMLR, 2011.
[48]
V. Perrone, I.Shcherbatyi, R. Jenatton, C. Archambeau, and M. Seeger. Constrained Bayesian optimization with max-value entropy search. NeurIPS Meta Learning Workshop, 2019.
[49]
V. Perrone, H. Shen, A. Zolic, I. Shcherbatyi, A. Ahmed, T. Bansal, M. Donini, F. Winkelmolen, R. Jenatton, J. B. Faddoul, B. Pogorzelska, M. Miladinovic, K. Kenthapadi, M. Seeger, and C. Archambeau. Amazon sagemaker automatic model tuning: Scalable black-box optimization. Technical report, arXiv:2012.08489, 2020.
[50]
F. Pfisterer, S. Coors, J. Thomas, and B. Bischl. Multi-objective automatic machine learning with autoxgboostmc. arXiv:1908.10796, 2019.
[51]
C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[52]
B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of the loop: A review of Bayesian optimization. IEEE, 2016.
[53]
J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat, and R. Adams. Scalable Bayesian optimization using deep neural networks. ICML, 2015.
[54]
N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Transactions on Information Theory, 58:3250--3265, 2012.
[55]
P. S. Thomas, B. C. da Silva, A. G. Barto, S. Giguere, Y. Brun, and E. Brunskill. Preventing undesirable behavior of intelligent machines. Science, 366(6468):999--1004, 2019.
[56]
S. Verma and J. Rubin. Fairness definitions explained. FairWare, 2018.
[57]
Z. Wang and S. Jegelka. Max-value entropy search for efficient Bayesian optimization. In Proceedings of the 34th International Conference on Machine Learning (ICML), pages 3627--3635, 2017.
[58]
B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro. Learning non-discriminatory predictors. COLT, 2017.
[59]
M. Yaghini, H. Heidari, and A. Krause. A human-in-the-loop framework to construct context-dependent mathematical formulations of fairness. arXiv preprint arXiv:1911.03020, 2019.
[60]
M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: Mechanisms for fair classification. AISTATS, 2017.
[61]
M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: A flexible approach for fair classification. JMLR, 2019.
[62]
R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork. Learning fair representations. ICML, 2013.
[63]
B. H. Zhang, B. Lemoine, and M. Mitchell. Mitigating unwanted biases with adversarial learning. AIES, 2018.

Cited By

View all

Index Terms

  1. Fair Bayesian Optimization

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    AIES '21: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society
    July 2021
    1077 pages
    ISBN:9781450384735
    DOI:10.1145/3461702
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 July 2021

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Bayesian optimization
    2. autoML
    3. bias
    4. fairness
    5. hyperparameter tuning

    Qualifiers

    • Research-article

    Conference

    AIES '21
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 61 of 162 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)391
    • Downloads (Last 6 weeks)44
    Reflects downloads up to 12 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media