skip to main content
research-article

Skeletonization via Local Separators

Published: 24 September 2021 Publication History

Abstract

We propose a new algorithm for curve skeleton computation that differs from previous algorithms by being based on the notion of local separators. The main benefits of this approach are that it is able to capture relatively fine details and that it works robustly on a range of shape representations. Specifically, our method works on shape representations that can be construed as spatially embedded graphs. Such representations include meshes, volumetric shapes, and graphs computed from point clouds. We describe a simple pipeline where geometric data are initially converted to a graph, optionally simplified, local separators are computed and selected, and finally a skeleton is constructed. We test our pipeline on polygonal meshes, volumetric shapes, and point clouds. Finally, we compare our results to other methods for skeletonization according to performance and quality.

References

[1]
Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. 2001. The power crust. In Proceedings of the 6th ACM Symposium on Solid Modeling and Applications. ACM, 249–266.
[2]
Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. 1998. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45, 6 (Nov. 1998), 891–923. https://doi.org/10.1145/293347.293348
[3]
Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-Yee Lee. 2008. Skeleton extraction by mesh contraction. ACM Trans. Graph. 27, 3 (2008), 1–10.
[4]
Silvia Biasotti, Dominique Attali, Jean-Daniel Boissonnat, Herbert Edelsbrunner, Gershon Elber, Michela Mortara, Gabriella Sanniti di Baja, Michela Spagnuolo, Mirela Tanase, and Remco Veltkamp. 2008a. Skeletal Structures. Springer, Berlin, 145–183. https://doi.org/10.1007/978-3-540-33265-7_5
[5]
Silvia Biasotti, Daniela Giorgi, Michela Spagnuolo, and Bianca Falcidieno. 2008b. Reeb graphs for shape analysis and applications. Theor. Comput. Sci. 392, 1–3 (2008), 5–22.
[6]
Jules Bloomenthal and Ken Shoemake. 1991. Convolution surfaces. ACM SIGGRAPH Comput. Graph. 25, 4 (1991), 251–256.
[7]
Harry Blum. 1967. A transformation for extracting new descriptors of shape. Models Percept. Speech Vis. Form 19, 5 (1967), 362–380.
[8]
Angela Brennecke and Tobias Isenberg. 2004. 3D shape matching using skeleton graphs. In Proceedings of the Annual Conference on Simulation and Visualisation (SimVis'04), Thomas Schulze, Stefan Schlechtweg, and Volkmar Hinz (Eds.). SCS European Publishing House, Erlangen, 299–310.
[9]
A. Broder. 1997. On the resemblance and containment of documents. In Proceedings of the Compression and Complexity of Sequences 1997 (SEQUENCES'97). IEEE Computer Society, Los Alamitos, CA, 21.
[10]
Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang, and Zhinxun Su. 2010. Point cloud skeletons via laplacian based contraction. In Proceedings of the Shape Modeling International Conference. IEEE, 187–197.
[11]
Vasek Chvatal. 1979. A greedy heuristic for the set-covering problem. Math. Operat. Res. 4, 3 (1979), 233–235.
[12]
Nicu D. Cornea, Deborah Silver, and Patrick Min. 2007. Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13, 3 (2007), 530–548.
[13]
Francesco De Carlo, Doğa Gürsoy, Daniel J. Ching, K. Joost Batenburg, Wolfgang Ludwig, Lucia Mancini, Federica Marone, Rajmund Mokso, Daniël M. Pelt, Jan Sijbers, et al. 2018. TomoBank: A tomographic data repository for computational x-ray science. Meas. Sci. Technol. 29, 3 (2018), 034004.
[14]
Tamal K. Dey, Fengtao Fan, and Yusu Wang. 2013. An efficient computation of handle and tunnel loops via Reeb graphs. ACM Trans. Graph. 32, 4 (2013), 32:1–32:10. https://doi.org/10.1145/2461912.2462017
[15]
Tamal K. Dey and Jian Sun. 2006. Defining and computing curve-skeletons with medial geodesic function. In Proceedings of the Symposium on Geometry Processing, Vol. 6. 143–152.
[16]
Yonatan Fridman, Stephen M. Pizer, Stephen Aylward, and Elizabeth Bullitt. 2004. Extracting branching tubular object geometry via cores. Med. Image Anal. 8, 3 (2004), 169–176.
[17]
William Harvey, Yusu Wang, and Rephael Wenger. 2010. A randomized O(m Log m) time algorithm for computing reeb graphs of arbitrary simplicial complexes. In Proceedings of the 26th Annual Symposium on Computational Geometry (SoCG'10). Association for Computing Machinery, New York, NY, 267276. https://doi.org/10.1145/1810959.1811005
[18]
Allen Hatcher. 2002. Algebraic Topology. Cambridge University Press.
[19]
Elad Hazan, Shmuel Safra, and Oded Schwartz. 2006. On the complexity of approximating k-set packing. Comput. Complex. 15, 1 (May 2006), 20–39. https://doi.org/10.1007/s00037-006-0205-6
[20]
C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann, H. Hagen, and C. Garth. 2016. A survey of topology-based methods in visualization. Comput. Graph. Forum 35, 3 (2016), 643–667. https://doi.org/10.1111/cgf.12933
[21]
Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. 2001. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48, 4 (2001), 723–760. https://doi.org/10.1145/502090.502095
[22]
Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and Baoquan Chen. 2013. L1-medial skeleton of point cloud.ACM Trans. Graph. 32, 4 (2013), 65–1.
[23]
C. A. J. Hurkens and A. Schrijver. 1989. On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discr. Math. 2, 1 (1989), 68–72. https://doi.org/10.1137/0402008
[24]
V. Jarník and M. Kossler. 1934. O minimálních grafech obsahujících n daných bodu. Časopis Pěst. Mat. 63, 8 (1934), 223–235.
[25]
Wei Jiang, Kai Xu, Zhi-Quan Cheng, Ralph R. Martin, and Gang Dang. 2013. Curve skeleton extraction by coupled graph contraction and surface clustering. Graph. Models 75, 3 (2013), 137–148.
[26]
David Kordalewski. 2013. New greedy heuristics for set cover and set packing. arxiv:1305.3584.
[27]
Bernhard Korte and Jaroslav Nešetřil. 2001. Vojtěch Jarník's work in combinatorial optimization. Discr. Math. 235, 1 (2001), 1–17. https://doi.org/10.1016/S0012-365X(00)00256-9Chech and Slovak 3.
[28]
Ta-Chih Lee, Rangasami L. Kashyap, and Chong-Nam Chu. 1994. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56, 6 (1994), 462–478.
[29]
Lei Li and Wencheng Wang. 2018. Improved use of LOP for curve skeleton extraction. Comput. Graph. Forum 37 (10 2018), 313–323. https://doi.org/10.1111/cgf.13570
[30]
Mattia Natali, Silvia Biasotti, Giuseppe Patanè, and Bianca Falcidieno. 2011. Graph-based representations of point clouds. Graph. Models 73, 5 (2011), 151–164.
[31]
Robert L. Ogniewicz and Markus Ilg. 1992. Voronoi skeletons: Theory and applications. In Proceedings of the 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 63–69.
[32]
Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas. 2007. Robust on-line computation of reeb graphs: simplicity and speed. ACM Trans. Graph. 26, 3 (Jul. 2007), 58es. https://doi.org/10.1145/1276377.1276449
[33]
H. Qin, J. Han, N. Li, H. Huang, and B. Chen. 2020. Mass-driven topology-aware curve skeleton extraction from incomplete point clouds. IEEE Trans. Vis. Comput. Graph. 26, 9 (2020), 2805–2817.
[34]
Daniel Rebain, Baptiste Angles, Julien Valentin, Nicholas Vining, Jiju Peethambaran, Shahram Izadi, and Andrea Tagliasacchi. 2019. LSMAT least squares medial axis transform. Computer Graphics Forum 38, 6 (2019), 5–18.
[35]
Punam K. Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja. 2016. A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76 (2016), 3–12.
[36]
Punam K. Saha, Gunilla Borgefors, and Gabriella Sanniti di Baja. 2017. Skeletonization: Theory, Methods and Applications. Academic Press.
[37]
Peter Sanders and Christian Schulz. 2012. High quality graph partitioning.Graph Partition. Graph Cluster. 588, 1 (2012), 1–17.
[38]
Jean Serra. 1983. Image Analysis and Mathematical Morphology. Academic Press, Inc.
[39]
Andrei Sharf, Thomas Lewiner, Ariel Shamir, and Leif Kobbelt. 2007. On-the-fly curve-skeleton computation for 3D shapes. Comput. Graph. Forum 26 (09 2007), 323–328. https://doi.org/10.1111/j.1467-8659.2007.01054.x
[40]
Kaleem Siddiqi and Stephen Pizer. 2008. Medial Representations: Mathematics, Algorithms and Applications. Vol. 37. Springer Science & Business Media.
[41]
Justin Solomon, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. Convolutional wasserstein distances: Efficient optimal transportation on geometric domains. ACM Trans. Graph. 34, 4 (2015), 1–11.
[42]
Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and Hao Zhang. 2012. Mean curvature skeletons. Computer Graphics Forum 31, 5 (2012), 1735–1744.
[43]
Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo, Nina Amenta, and Alexandru Telea. 2016. 3D skeletons: A state-of-the-art report. Comput. Graph. Forum 35, 2 (2016), 573–597. https://doi.org/10.1111/cgf.12865
[44]
Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or. 2009. Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28, 3, Article 71 (Jul. 2009), 9 pages. https://doi.org/10.1145/1531326.1531377
[45]
Alexandru Telea and Andrei C. Jalba. 2012. Computing curve skeletons from medial surfaces of 3D shapes. In Theory and Practice of Computer Graphics, Hamish Carr and Silvester Czanner (Eds.). The Eurographics Association. https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG12/099-106
[46]
Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles Gueunet, and Michael Michaux. 2017. The Topology ToolKit. IEEE Trans. Vis. Comput. Graph. (2017).
[47]
Julien Tierny, Jean-Philippe Vandeborre, and Mohamed Daoudi. 2008. Enhancing 3D mesh topological skeletons with discrete contour constrictions. Vis. Comput. 24, 3 (2008), 155–172.
[48]
Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan Singh. 2019. Predicting animation skeletons for 3D articulated models via volumetric nets. In Proceedings of the International Conference on 3D Vision (3DV'19). IEEE, 298–307.
[49]
Yajie Yan, Kyle Sykes, Erin W. Chambers, David Letscher, and Tao Ju. 2016. Erosion thickness on medial axes of 3D shapes. ACM Trans. Graph. 35, 4 (2016), 38:1–38:12. https://doi.org/10.1145/2897824.2925938
[50]
Yang Zhou, Kangxue Yin, Hui Huang, Hao Zhang, Minglun Gong, and Daniel Cohen-Or. 2015. Generalized cylinder decomposition.ACM Trans. Graph. 34, 6 (2015), 171–1.

Cited By

View all

Index Terms

  1. Skeletonization via Local Separators

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 40, Issue 5
    October 2021
    190 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3477320
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 September 2021
    Accepted: 01 March 2021
    Revised: 01 March 2021
    Received: 01 July 2020
    Published in TOG Volume 40, Issue 5

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Curve skeleton
    2. graph
    3. vertex separator

    Qualifiers

    • Research-article
    • Refereed

    Funding Sources

    • Independent Research Fund Denmark
    • VILLUM Foundation

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)98
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 09 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media