skip to main content
10.1145/3423323.3425748acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

An Automated Pipeline for a Browser-based, City-scale Mobile 4D VR Application based on Historical Images

Published: 12 October 2020 Publication History

Abstract

The process for automatically creating 3D city models from contemporary photographs and visualizing them on mobile devices is now well established, but historical 4D city models are more challenging. The fourth dimension here is time. This article describes an automated VR pipeline based on historical photographs and resulting in an interactive browser-based device-rendered 4D visualization and information system for mobile devices. Since the pipeline shown is currently still under development, initial results for stages of the process will be shown and assessed for accuracy and usability.

References

[1]
Schindler, G. and Dellaert, F. 4D cities: analyzing, visualizing, and interacting with historical urban photo collections. Journal of Multimedia, 7, 2 (2012), 124--131.
[2]
Bitelli, G., Dellapasqua, M., Girelli, V. A., Sbaraglia, S. and Tinia, M. A. Historical Photogrammetry and Terrestrial Laser Scanning for the 3d Virtual Reconstruction of Destroyed Structures: a Case Study in Italy. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42 (2017), 113.
[3]
n.b. ArchiMediaL. Enriching and linking historical architectural and urban image collections. 2019.
[4]
Radovic, M., Adarkwa, O. and Wang, Q. Object Recognition in Aerial Images Using Convolutional Neural Networks. Journal of Imaging, 3 (2017).
[5]
Aiger, D., Allen, B. and Golovinskiy, A. Large-Scale 3D Scene Classification With Multi-View Volumetric CNN (2017).
[6]
Snavely, N., Seitz, S. M. and Szeliski, R. Photo tourism: exploring photo collections in 3d. ACM transactions on graphics (TOG), 25 (2006), 835--846.
[7]
Snavely, N., Seitz, S. M. and Szeliski, R. Modeling the World from Internet Photo Collection. International Journal of Computer Vision, 80, 2 (2007), 189--210.
[8]
Maiwald, F., Schneider, D., Henze, F., Niebling, F. and Münster, S. Feature matching of historical images based on geometry of quadrilaterals. ISPRS - International Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2018).
[9]
Pomaska, G. Zur Dokumentation und 3D?Modellierung von Denkmalen mit digitalen fotografischen Verfahren. Verlag Philipp von Zabern, 2011.
[10]
Smithsonian 3D Labs https://3d.si.edu/labs. 2019.
[11]
X3DOM https://x3dom.org/. 2018.
[12]
Three.js https://threejs.org/. 2019.
[13]
3D HOP http://vcg.isti.cnr.it/3dhop/, 2019.
[14]
Hexalab https://www.hexalab.net/. 2019.
[15]
INCEPTION https://www.inception-project.eu/en. 2018.
[16]
N. Prechtel, S. M., C. Kröber, C. Schubert, S. Schietzold Presenting cultural heritage landscapes -- from gis via 3d models to interactive presentation frameworks. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-5/W1, 2013 (2013).
[17]
NIMA -- National Imagery and Mapping Agency: Department of Defense World Geodetic System Technical Report, TR 8350.2, 1984.
[18]
Borda, A. and Bowen, J. P. Smart Cities and Digital Culture: Models of Innovation. Springer International Publishing, 2019.
[19]
Friedrichs, K., Münster, S., Kröber, C. and Bruschke, J. Creating Suitable Tools for Art and Architectural Research with Historic Media Repositories. Springer International Publishing, 2017.
[20]
Sivic, J., Russell, B. C., Efros, A. A., Zisserman, A. and Freeman, W. T. Discovering objects and their location in images. IEEE, 2005.
[21]
Wan, J., Wang, D., Hoi, S. C. H., Wu, P., Zhu, J., Zhang, Y. and Li, J. Deep Learning for Content-Based Image Retrieval (2014), 157--166.
[22]
Goodfellow, I., Bengio, Y. and Courville, A. Deep learning. MIT Press, Cambridge, 2016.
[23]
Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22, 10 (2009), 1345--1359.
[24]
Simonyan, K. and Zisserman, A. Very deep convolutional networks for largescale image recognition. arXiv preprint, 1409.1556 (2014).
[25]
Selvaraju et al., R. R. Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE international conference on computer vision (2017), 618--626.
[26]
Azizpour, H., Sullivan, J. and Carlsson, S. Cnn features off-the-shelf: An astounding baseline for recognition. CVPRW (2014).
[27]
Wan et al., J. Deep learning for content-based image retrieval: A comprehensive study. Proceedings of the 22nd ACM international conference on Multimedia (2014), 157--166.
[28]
Razavian et al., A. S. Visual instance retrieval with deep convolutional networks. ITE Transactions on Media Technology and Applications, 4, 3 (2016), 251--258.
[29]
Zhou, W., Li, H. and Tian, Q. Recent advance in content-based image retrieval: A literature survey. arXiv preprint, 1706.06064 (2017).
[30]
Noh et al., H. Large-scale image retrieval with attentive deep local features. IEEE international conference on computer vision (2017), 3456--3465.
[31]
Xie et al., L. Image classification and retrieval are one. Proceedings of the 5th ACM on International Conference on Multimedia Retrieval (2015), 3--10.
[32]
Callieri, M., Cignoni, P., Corsini, M. and Scopigno, R. Masked photo blending: Mapping dense photographic data set on high-resolution sampled 3D models. Computers & Graphics, 32, 4 (2008), 464--473.
[33]
Pani Paudel, D., Habed, A., Demonceaux, C. and Vasseur, P. Robust and optimal sum-of-squares-based point-to-plane registration of image sets and structured scenes. 2015.
[34]
Lowe, D. G. Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60, 2 (2004), 91--110.
[35]
Bay, H., Tuytelaars, T. and Van Gool, L. Surf: Speeded up robust features. Springer, 2006.
[36]
Ali, H. K. and Whitehead, A. Feature Matching for Aligning Historical and Modern Images. International Journal of Computer Applications, 21, 3 (2014), 188--201.
[37]
Wolfe, R. Modern to historical image feature matching. Published online: http://robbiewolfe. ca/programming/honoursproject/report. pdf (2013).
[38]
Arandjelovic, R. and Zisserman, A. Three things everyone should know to improve object retrieval. IEEE, 2012.
[39]
Morel, J.-M. and Yu, G. ASIFT: A new framework for fully affine invariant image comparison. SIAM journal on imaging sciences, 2, 2 (2009), 438--469.
[40]
Moulon, P., Monasse, P. and Marlet, R. Adaptive structure from motion with a contrario model estimation. Springer, 2012.
[41]
Schönberger, J. L. and Frahm, J.-M. Structure-from-Motion Revisited. 2016.
[42]
Wu, C. Towards linear-time incremental structure from motion. IEEE, 2013.
[43]
Wang, L., Neumann, U. and You, S. Wide-baseline image matching using line signatures. 2009.
[44]
Micusik, B., Wildenauer, H. and Kosecka, J. Detection and matching of rectilinear structures. 2008.
[45]
Maiwald, F., Schneider, D. and Henze, F. Bestimmung der Korrespondenz zwischen historischen Gebäudeaufnahmen basierend auf der Zuordnung geometrischer Merkmale. Publikationen der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation eV, 27, 38 (2018), 103--116.
[46]
Li, J., Hu, Q. and Ai, M. RIFT: Multi-modal Image Matching Based on Radiation-invariant Feature Transform. arXiv preprint arXiv:1804.09493 (2018).
[47]
Mishkin, D., Matas, J. and Perdoch, M. MODS: Fast and robust method for two-view matching. Computer Vision and Image Understanding, 141 (2015), 81--93.
[48]
Mishkin, D., Matas, J., Perdoch, M. and Lenc, K. Wxbs: Wide baseline stereo generalizations. arXiv preprint arXiv:1504.06603 (2015).
[49]
Maiwald, F., Bruschke, J., Lehmann, C. and Niebling, F. A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies and VR/AR. Virtual Archaeology Review, 10, 21 (2019), 1--13.
[50]
Maiwald, F., Vietze, T., Schneider, D., Henze, F., Münster, S. and Niebling, F. Photogrammetric analysis of historical image repositories for virtual reconstruction in the field of digital humanities. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42 (2017), 447.
[51]
Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A. and Sattler, T. D2-Net: A Trainable CNN for Joint Description and Detection of Local Features. 2019.
[52]
Noh, H., Araujo, A., Sim, J., Weyand, T. and Han, B. Large-scale image retrieval with attentive deep local features. 2017.
[53]
Herold, H. and Hecht, R. 3D Reconstruction of Urban History Based on Old Maps. Springer International Publishing, 2018.
[54]
Oliveira, S. A., Lenardo, I. d. and Kaplan, F. Machine Vision Algorithms on Cadaster Plans. 2017.
[55]
Münster, S. Cultural Heritage at a Glance. Four case studies about the perception of digital architectural 3D models. IEEE, 2018.
[56]
Special Interest Group 3D CityGML Specification. 2007.
[57]
Stadt Dresden Virtuelles 3D-Stadtmodell (2018).
[58]
Harrison, R., Flood, D. and Duce, D. Usability of mobile applications: literature review and rationale for a new usability model. Journal of Interaction Science, 1, 1 (May 07 2013), 1.
[59]
Zhang, D. and Adipat, B. Challenges, methodologies, and issues in the usability testing of mobile applications. International Journal of Human-Computer Interaction, 18, 3 (2005), 293--308.
[60]
Nielsen, J. and Budiu, R. Mobile Usability. Academic Press, Salt Lake City, 2013.

Cited By

View all
  • (2024)A Digital 4D Information System on the World Scale: Research Challenges, Approaches, and Preliminary ResultsApplied Sciences10.3390/app1405199214:5(1992)Online publication date: 28-Feb-2024
  • (2023)UD-SV : Plateforme d’exploration de données urbaines à n-dimensions — Espace, Temps, ThématiquesMappemonde10.4000/mappemonde.8265Online publication date: 7-Mar-2023
  • (2023)Advancements in 3D Heritage Data Aggregation and Enrichment in Europe: Implications for Designing the Jena Experimental Repository for the DFG 3D ViewerApplied Sciences10.3390/app1317978113:17(9781)Online publication date: 29-Aug-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SUMAC'20: Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia heritAge Contents
October 2020
70 pages
ISBN:9781450381550
DOI:10.1145/3423323
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 October 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cultural heritage
  2. human-computer interaction
  3. mobile visualization
  4. pipeline

Qualifiers

  • Research-article

Funding Sources

  • Thringische Aufbaubank
  • German Federal Ministry of Education and Research

Conference

MM '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 5 of 6 submissions, 83%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)18
  • Downloads (Last 6 weeks)1
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media