skip to main content
research-article
Open access

Finding Optimal Sequences for Area Aggregation—A vs. Integer Linear Programming

Published: 14 October 2020 Publication History

Abstract

To provide users with maps of different scales and to allow them to zoom in and out without losing context, automatic methods for map generalization are needed. We approach this problem for land-cover maps. Given two land-cover maps at two different scales, we want to find a sequence of small incremental changes that gradually transforms one map into the other. We assume that the two input maps consist of polygons, each of which belongs to a given land-cover type. Every polygon on the smaller-scale map is the union of a set of adjacent polygons on the larger-scale map.
In each step of the computed sequence, the smallest area is merged with one of its neighbors. We do not select that neighbor according to a prescribed rule but compute the whole sequence of pairwise merges at once, based on global optimization. We have proved that this problem is NP-hard. We formalize this optimization problem as that of finding a shortest path in a (very large) graph. We present the A algorithm and integer linear programming to solve this optimization problem. To avoid long computing times, we allow the two methods to return non-optimal results. In addition, we present a greedy algorithm as a benchmark. We tested the three methods with a dataset of the official German topographic database ATKIS. Our main result is that A finds optimal aggregation sequences for more instances than the other two methods within a given time frame.

References

[1]
Arbeitsgemeinschaft der Vermessungsverwaltungender Länder der Bundesrepublik Deutschland (AdV). 2003. ATKIS—Objektartenkatalog (ATKIS—OK) Teil D0—Erläuterungen zu allen Teilkatalogen (3.2 ed.). Retrieved from https://shop.lgl-bw.de/lvshop2/ProduktInfo/geodaten/atkis-ok/atkis-ok_Basis-DLM_BW 3.2(PDF-28 07 03).pdf.
[2]
Stephen P. Bradley, Arnoldo C. Hax, and Thomas L. Magnanti. 1977. Applied Mathematical Programming. Addison-Wesley Publishing Company. Retrieved from http://web.mit.edu/15.053/www/AMP.htm.
[3]
Cynthia A. Brewer and Barbara P. Buttenfield. 2007. Framing guidelines for multi-scale map design using databases at multiple resolutions. Cartog. Geog. Inf. Sci. 34, 1 (2007), 3--15.
[4]
Dirk Burghardt. 2005. Controlled line smoothing by snakes. GeoInformatica 9, 3 (01 Sept. 2005), 237--252.
[5]
Alessandro Cecconi. 2003. Integration of Cartographic Generalization and Multi-scale Databases for Enhanced Web Mapping. PhD thesis. Universität Zürich, Switzerland.
[6]
Frédéric Chazal, André Lieutier, Jarek Rossignac, and Brian Whited. 2010. Ball-map: Homeomorphism between compatible surfaces. Int. J. Comput. Geom. Applic. 20, 3 (2010), 285--306.
[7]
Tao Cheng and Zhilin Li. 2006. Toward quantitative measures for the semantic quality of polygon generalization. Cartographica 41, 2 (2006), 487--499.
[8]
Markus Chimani, Thomas C. van Dijk, and Jan-Henrik Haunert. 2014. How to eat a graph: Computing selection sequences for the continuous generalization of road networks. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACMGIS’14). 243--252.
[9]
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3rd ed.). The MIT Press. Retrieved from https://mitpress.mit.edu/books/introduction-algorithms-third-edition.
[10]
Thomas J. Cova and Richard L. Church. 2000. Contiguity constraints for single-region site search problems. Geog. Anal. 32, 4 (2000), 306--329.
[11]
Jeff Danciger, Satyan L. Devadoss, John Mugno, Don Sheehy, and Rachel Ward. 2009. Shape deformation in continuous map generalization. GeoInformatica 13, 2 (2009), 203--221.
[12]
Min Deng and Dongliang Peng. 2015. Morphing linear features based on their entire structures. Trans. GIS 19, 5 (2015), 653--677.
[13]
Edsger W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 1 (1959), 269--271.
[14]
Arta Dilo, Peter van Oosterom, and Arjen Hofman. 2009. Constrained tGAP for generalization between scales: The case of Dutch topographic data. Comput. Environ. Urb. Syst. 33, 5 (2009), 388--402.
[15]
David H. Douglas and Thomas K. Peucker. 1973. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10, 2 (1973), 112--122.
[16]
Cécile Duchêne, Blanca Baella, Cynthia A. Brewer, Dirk Burghardt, Barbara P. Buttenfield, Julien Gaffuri, Dominik Käuferle, François Lecordix, Emmanuel Maugeais, Ron Nijhuis, Maria Pla, Marc Post, Nicolas Regnauld, Lawrence V. Stanislawski, Jantien Stoter, Katalin Tóth, Sabine Urbanke, Vincent van Altena, and Antje Wiedemann. 2014. Generalisation in practice within national mapping agencies. In Abstracting Geographic Information in a Data Rich World: Methodologies and Applications of Map Generalisation, Dirk Burghardt, Cécile Duchêne, and William Mackaness (Eds.). Springer, Cham, Chapter 11, 329--391.
[17]
Yu S. Frolov. 1975. Measuring the shape of geographical phenomena: A history of the issue. Soviet Geog. 16, 10 (1975), 676--687.
[18]
Stefan Funke, Thomas Mendel, Alexander Miller, Sabine Storandt, and Maria Wiebe. 2017. Map simplification with topology constraints: Exactly and in practice. In Proceedings of the 19th Workshop on Algorithm Engineering and Experiments (ALENEX’17). 185--196.
[19]
Jean-François Girres and Guillaume Touya. 2014. Cartographic generalisation aware of multiple representations. In Proceedings of the 8th International Conference on Geographic Information Science (GIScience’14), Matt Duckham, Kathleen Stewart, and Edzer Pebesma (Eds.).
[20]
Lars Harrie. 1999. The constraint method for solving spatial conflicts in cartographic generalization. Cartog. Geog. Inf. Sci. 26, 1 (1999), 55--69.
[21]
Lars Harrie, Hanna Stigmar, and Milan Djordjevic. 2015. Analytical estimation of map readability. ISPRS Int. J. Geo-Inf. 4, 2 (2015), 418--446.
[22]
Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cyber. 4, 2 (1968), 100--107.
[23]
Jan-Henrik Haunert. 2009. Aggregation in Map Generalization by Combinatorial Optimization. PhD thesis. Leibniz Universität Hannover, Germany. Retrieved from https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-626.pdf.
[24]
Jan-Henrik Haunert, Arta Dilo, and Peter van Oosterom. 2009. Constrained set-up of the tGAP structure for progressive vector data transfer. Comput. Geosci. 35, 11 (2009), 2191--2203.
[25]
Jan-Henrik Haunert and Wouter Meulemans. 2016. Partitioning polygons via graph augmentation. In Proceedings of the 9th International Conference on Geographic Information Science (GIScience) (Lecture Notes in Computer Science), A. Jennifer Miller, David O’Sullivan, and Nancy Wiegand (Eds.), Vol. 9927. Springer, 18--33.
[26]
Jan-Henrik Haunert and Monika Sester. 2008. Assuring logical consistency and semantic accuracy in map generalization. Photogram. Ferner. Geoinf. 2008, 3 (2008), 165--173. Retrieved from https://www.dgpf.de/pfg/2008/pfg2008_3_Haunert.pdf.
[27]
Jan-Henrik Haunert and Alexander Wolff. 2010. Optimal and topologically safe simplification of building footprints. In Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACMGIS’10), A. E. Abbadi, D. Agrawal, M. Mokbel, and P. Zhang (Eds.). 192--201.
[28]
Jan-Henrik Haunert and Alexander Wolff. 2010. Area aggregation in map generalisation by mixed-integer programming. Int. J. Geog. Inf. Sci. 24, 12 (Nov. 2010), 1871--1897.
[29]
Jan-Henrik Haunert and Alexander Wolff. 2016. Räumliche Analyse durch kombinatorische Optimierung. In Handbuch der Geodäsie (6 Bände), Willi Freeden and Reiner Rummel (Eds.). Springer, 1--39.
[30]
Jan-Henrik Haunert and Alexander Wolff. 2017. Beyond maximum independent set: An extended integer programming formulation for point labeling. ISPRS Int. J. Geo-Inf. 6, 11 (2017).
[31]
Lina Huang, Tinghua Ai, Peter van Oosterom, Xiongfeng Yan, and Min Yang. 2017. A matrix-based structure for vario-scale vector representation over a wide range of map scales: The case of river network data. ISPRS Int. J. Geo-Inf. 6, 7 (2017).
[32]
Olli Jaakkola. 1998. Multi-scale categorical data bases with automatic generalization transformations based on map algebra. Cartog. Geog. Inf. Syst. 25, 4 (1998), 195--207.
[33]
N. Karmarkar. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4, 4 (01 Dec. 1984), 373--395.
[34]
M. Keane. 1975. The size of the region-building problem. Environ. Plan. A: Econ. Space 7, 5 (1975), 575--577.
[35]
Jingzhong Li, Tinghua Ai, Pengcheng Liu, and Min Yang. 2017. Continuous scale transformations of linear features using simulated annealing-based morphing. ISPRS Int. J. Geo-Inf. 6, 8 (2017).
[36]
Jingzhong Li, Xingong Li, and Tian Xie. 2017. Morphing of building footprints using a turning angle function. ISPRS Int. J. Geo-Inf. 6, 6 (2017).
[37]
Wenwen Li, Michael F. Goodchild, and Richard Church. 2013. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geog. Inf. Sci. 27, 6 (2013), 1227--1250.
[38]
Zhilin Li and Qi Zhou. 2012. Integration of linear and areal hierarchies for continuous multi-scale representation of road networks. Int. J. Geog. Inf. Sci. 26, 5 (2012), 855--880.
[39]
Alan M. Maceachren. 1985. Compactness of geographic shape: Comparison and evaluation of measures. Geog. Ann.: Series B, Hum. Geog. 67, 1 (1985), 53--67.
[40]
William A. Mackaness, Dirk Burghardt, and Cécile Duchêne. 2016. Map generalization. In International Encyclopedia of Geography: People, the Earth, Environment and Technology. John Wiley 8 Sons, 1--16.
[41]
Martijn Meijers, Sandro Savino, and Peter van Oosterom. 2016. SplitArea: An algorithm for weighted splitting of faces in the context of a planar partition. Int. J. Geog. Inf. Sci. 30, 8 (2016), 1522--1551.
[42]
Terje Midtbø and Trond Nordvik. 2007. Effects of animations in zooming and panning operations on web maps: A web-based experiment. Cartog. J. 44, 4 (2007), 292--303.
[43]
James P. Minas and John W. Hearne. 2016. An optimization model for aggregation of prescribed burn units. TOP 24, 1 (2016), 180--195.
[44]
Jean-Claude Müller, Robert Weibel, Jean-Philippe Lagrange, and F. Salgé. 1995. Generalization: State of the art and issues. In GIS and Generalization: Methodology and Practice, Jean-Claude Müller, Jean-Philippe Lagrange, and Robert Weibel (Eds.). Taylor 8 Francis, London, UK, Chapter 1, 3--17.
[45]
Martin Nöllenburg, Damian Merrick, Alexander Wolff, and Marc Benkert. 2008. Morphing polylines: A step towards continuous generalization. Comput. Environ. Urb. Syst. 32, 4 (2008), 248--260.
[46]
Johannes Oehrlein and Jan-Henrik Haunert. 2017. A cutting-plane method for contiguity-constrained spatial aggregation. J. Spat. Inf. Sci.15 (2017), 89--120.
[47]
D. N. Pantazis, B. Karathanasis, M. Kassoli, Ath. Koukofikis, and P. Stratakis. 2009. Morphing techniques: Towards new methods for raster based cartographic generalization. In Proceedings of the 24th International Cartographic Conference (ICC’09). Retrieved from https://icaci.org/files/documents/ICC_proceedings/ICC2009/html/refer/19_5.pdf.
[48]
Amit Patel. 1997. Amit’s A Pages. Retrieved from http://theory.stanford.edu/∼amitp/GameProgramming/.
[49]
Dongliang Peng, Min Deng, and Binbin Zhao. 2012. Multi-scale transformation of river networks based on morphing technology. J. Rem. Sens. 16, 5 (2012), 953--968. Retrieved from http://www.jors.cn/jrs/ch/reader/view_abstract.aspx?file_no=r112728flag=1.
[50]
Dongliang Peng, Jan-Henrik Haunert, Alexander Wolff, and Christophe Hurter. 2013. Morphing polylines based on least squares adjustment. In Proceedings of the 16th ICA Workshop on Generalisation and Multiple Representation (ICAGM’13). Retrieved from https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_6.pdf.
[51]
Dongliang Peng and Guillaume Touya. 2017. Continuously generalizing buildings to built-up areas by aggregating and growing. In Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics (UrbanGIS’17). ACM.
[52]
Dongliang Peng, Alexander Wolff, and Jan-Henrik Haunert. 2016. Continuous generalization of administrative boundaries based on compatible triangulations. In Proceedings of the 19th AGILE Conference on Geographic Information Science, Geospatial Data in a Changing World (Lecture Notes in Geoinformation and Cartography), Tapani Sarjakoski, Yasmina Maribel Santos, and Tiina L. Sarjakoski (Eds.). Springer, 399--415.
[53]
Dongliang Peng, Alexander Wolff, and Jan-Henrik Haunert. 2017. Using the A algorithm to find optimal sequences for area aggregation. In Proceedings of the 28th International Cartographic Conference (ICC’17), Advances in Cartography and GIScience (Lecture Notes in Geoinformation and Cartography), Michael P. Peterson (Ed.). Springer, 389--404.
[54]
Ira Pohl. 1973. The avoidance of (relative) catastrophe, heuristic competence, genuine dynamic weighting and computational issues in heuristic problem solving. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI’73). Morgan Kaufmann Publishers Inc., Stanford, CA, 12--17. Retrieved from https://exhibits.stanford.edu/feigenbaum/catalog/sq127cx4634.
[55]
Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. 1989. Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cyber. 19, 1 (1989), 17--30.
[56]
Nicolas Regnauld. 2001. Contextual building typification in automated map generalization. Algorithmica 30, 2 (2001), 312--333.
[57]
Alan Saalfeld. 1999. Topologically consistent line simplification with the Douglas--Peucker algorithm. Cartog. Geog. Inf. Sci. 26, 1 (1999), 7--18.
[58]
Nadine Schwartges, Dennis Allerkamp, Jan-Henrik Haunert, and Alexander Wolff. 2013. Optimizing active ranges for point selection in dynamic maps. In Proceedings of the 16th ICA Workshop on Generalisation and Multiple Representation (ICAGM’13). Retrieved from https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_5.pdf.
[59]
Monika Sester. 2005. Optimization approaches for generalization and data abstraction. Int. J. Geog. Inf. Sci. 19, 8--9 (2005), 871--897.
[60]
Monika Sester and Claus Brenner. 2005. Continuous generalization for visualization on small mobile devices. In Proceedings of the 11th International Symposium on Spatial Data Handling (SDH’05), Peter Fisher (Ed.). Springer, 355--368.
[61]
Takeshi Shirabe. 2005. A model of contiguity for spatial unit allocation. Geog. Anal. 37, 1 (2005), 2--16.
[62]
Geoff Smith, Matt Beare, Mike Boyd, Tim Downs, Martin Gregory, Dan Morton, Nigel Brown, and Andy Thomson. 2007. UK land cover map production through the generalisation of OS MasterMap. Cartog. J. 44, 3 (2007), 276--283.
[63]
Jantien Stoter, John van Smaalen, Nico Bakker, and Paul Hardy. 2009. Specifying map requirements for automated generalization of topographic data. Cartog. J. 46, 3 (2009), 214--227.
[64]
Radan Šuba, Martijn Meijers, and Peter van Oosterom. 2016. Continuous road network generalization throughout all scales. ISPRS Int. J. Geo-Inf. 5, 8 (2016).
[65]
Frank Thiemann and Monika Sester. 2018. An automatic approach for generalization of land-cover data from topographic data. In Trends in Spatial Analysis and Modelling: Decision-Support and Planning Strategies, Martin Behnisch and Gotthard Meinel (Eds.). Geotechnologies and the Environment, Vol. 19. Springer, Chapter 10, 193--207.
[66]
Sabine Timpf. 1998. Hierarchical Structures in Map Series. PhD thesis. Technical University Vienna, Austria. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.45618rep=rep18type=pdf.
[67]
Xiaohua Tong, Yanmin Jin, Lingyun Li, and Tinghua Ai. 2015. Area-preservation simplification of polygonal boundaries by the use of the structured total least squares method with constraints. Trans. GIS 19, 5 (2015), 780--799.
[68]
Guillaume Touya and Marion Dumont. 2017. Progressive block graying and landmarks enhancing as intermediate representations between buildings and urban areas. In Proceedings of the 20th ICA Workshop on Generalisation and Multiple Representation (ICAGM’17). Retrieved from https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2017/genemr2017_paper_1.pdf.
[69]
Guillaume Touya and Jean-François Girres. 2013. ScaleMaster 2.0: A ScaleMaster extension to monitor automatic multi-scales generalizations. Cartog. Geog. Inf. Sci. 40, 3 (2013), 192--200.
[70]
Marc van Kreveld. 2001. Smooth generalization for continuous zooming. In Proceedings of the 5th ICA Workshop on Generalisation and Multiple Representation (ICAGM’01). Retrieved from http://www.staff.science.uu.nl/ kreve101/papers/smooth.pdf.
[71]
Peter van Oosterom. 2005. Variable-scale topological data structures suitable for progressive data transfer: The GAP-face tree and GAP-edge forest. Cartog. Geog. Inf. Sci. 32, 4 (2005), 331--346.
[72]
Peter van Oosterom and Martijn Meijers. 2014. Vario-scale data structures supporting smooth zoom and progressive transfer of 2D and 3D data. Int. J. Geog. Inf. Sci. 28, 3 (2014), 455--478.
[73]
Peter van Oosterom, Martijn Meijers, Jantien Stoter, and Radan Šuba. 2014. Data structures for continuous generalisation: tGAP and SSC. In Abstracting Geographic Information in a Data Rich World: Methodologies and Applications of Map Generalisation, Dirk Burghardt, Cécile Duchêne, and William Mackaness (Eds.). Springer, Cham, Chapter 4, 83--117.
[74]
Peter van Oosterom and Vincent Schenkelaars. 1995. The development of an interactive multi-scale GIS. Int. J. Geog. Inf. Syst. 9, 5 (1995), 489--507.
[75]
J. W. N. van Smaalen. 2003. Automated Aggregation of Geographic Objects. PhD thesis. Wageningen University, The Netherlands.
[76]
Robert Weibel. 1997. Generalization of spatial data: Principles and selected algorithms. In Algorithmic Foundations of Geographic Information Systems, Marc van Kreveld, Jürg Nievergelt, Thomas Roos, and Peter Widmayer (Eds.). (Lecture Notes in Computer Science), Vol. 1340. Springer, Chapter 5, 99--152.
[77]
Robert Weibel and Dirk Burghardt. 2017. Generalization, on-the-fly. In Encyclopedia of GIS (2nd ed.), Shashi Shekhar, Hui Xiong, and Xun Zhou (Eds.). Springer, 657--663.
[78]
Brian Whited and Jarek Rossignac. 2011. Ball-Morph: Definition, implementation, and comparative evaluation. IEEE Trans. Vis. Comput. Graph. 17, 6 (2011), 757--769.
[79]
H. Paul Williams. 2009. Logic and Integer Programming (1st ed.). Springer.
[80]
Justin C. Williams. 2002. A zero-one programming model for contiguous land acquisition. Geog. Anal. 34, 4 (2002), 330--349.
[81]
Jeffrey Wright, Charles Revelle, and Jared Cohon. 1983. A multiobjective integer programming model for the land acquisition problem. Reg. Sci. Urb. Econ. 13, 1 (1983), 31--53.
[82]
Shin-Ting Wu, Adler C. G. da Silva, and Mercedes R. G. Márquez. 2004. The Douglas--Peucker algorithm: Sufficiency conditions for non-self-intersections. J. Braz. Comput. Soc. 9, 3 (04 2004), 67--84.
[83]
H. P. Young. 1988. Measuring the compactness of legislative districts. Legis. Stud. Quart. 13, 1 (1988), 105--115.
[84]
Andris A. Zoltners and Prabhakant Sinha. 1983. Sales territory alignment: A review and model. Manag. Sci. 29, 11 (1983), 1237--1256.

Cited By

View all

Index Terms

  1. Finding Optimal Sequences for Area Aggregation—A vs. Integer Linear Programming

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Spatial Algorithms and Systems
    ACM Transactions on Spatial Algorithms and Systems  Volume 7, Issue 1
    March 2021
    161 pages
    ISSN:2374-0353
    EISSN:2374-0361
    DOI:10.1145/3417500
    Issue’s Table of Contents
    © 2020 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 14 October 2020
    Accepted: 01 June 2020
    Revised: 01 June 2020
    Received: 01 April 2019
    Published in TSAS Volume 7, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Continuous map generalization
    2. compactness
    3. land-cover area
    4. shortest path
    5. type change

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)227
    • Downloads (Last 6 weeks)27
    Reflects downloads up to 16 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media