skip to main content
10.1145/3397481.3450670acmconferencesArticle/Chapter ViewAbstractPublication PagesiuiConference Proceedingsconference-collections
Article
Public Access

DeepSI: Interactive Deep Learning for Semantic Interaction

Published: 14 April 2021 Publication History

Abstract

In this paper, we design novel interactive deep learning methods to improve semantic interactions in visual analytics applications. The ability of semantic interaction to infer analysts’ precise intents during sensemaking is dependent on the quality of the underlying data representation. We propose the DeepSIfinetune framework that integrates deep learning into the human-in-the-loop interactive sensemaking pipeline, with two important properties. First, deep learning extracts meaningful representations from raw data, which improves semantic interaction inference. Second, semantic interactions are exploited to fine-tune the deep learning representations, which then further improves semantic interaction inference. This feedback loop between human interaction and deep learning enables efficient learning of user- and task-specific representations. To evaluate the advantage of embedding the deep learning within the semantic interaction loop, we compare DeepSIfinetune against a state-of-the-art but more basic use of deep learning as only a feature extractor pre-processed outside of the interactive loop. Results of two complementary studies, a human-centered qualitative case study and an algorithm-centered simulation-based quantitative experiment, show that DeepSIfinetune more accurately captures users’ complex mental models with fewer interactions.

References

[1]
Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. 2018. State-of-the-art in artificial neural network applications: A survey. Heliyon 4, 11 (2018), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
[2]
Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014. Power to the people: The role of humans in interactive machine learning. AI Magazine 35, 4 (2014), 105–120.
[3]
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473(2014).
[4]
Aurélien Bellet, Amaury Habrard, and Marc Sebban. 2015. Metric Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning 9, 1(2015), 1–151. https://doi.org/10.2200/S00626ED1V01Y201501AIM030 arXiv:https://doi.org/10.2200/S00626ED1V01Y201501AIM030
[5]
Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 8(2013), 1798–1828. https://doi.org/10.1109/tpami.2013.50
[6]
Y. Bengio, A. Courville, and P. Vincent. 2013. Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 8 (Aug 2013), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50
[7]
Yali Bian, Michelle Dowling, and Chris North. 2019. Evaluating Semantic Interaction on Word Embeddings via Simulation.EValuation of Interactive VisuAl Machine Learning systems, an IEEE VIS 2019 Workshop. (2019).
[8]
Yali Bian, John Wenskovitch, and Chris North. 2019. DeepVA: Bridging Cognition and Computation through Semantic Interaction and Deep Learning.Proceedings of the IEEE VIS Workshop MLUI 2019: Machine Learning from User Interactions for Visualization and Analytics. (2019).
[9]
Nadia Boukhelifa, Anastasia Bezerianos, and Evelyne Lutton. 2018. Evaluation of interactive machine learning systems. In Human and Machine Learning. Springer, 341–360.
[10]
Lauren Bradel, Chris North, Leanna House, and Scotland Leman. [n.d.]. Multi-model semantic interaction for text analytics. In 2014 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 163–172.
[11]
Eli T Brown, Jingjing Liu, Carla E Brodley, and Remco Chang. 2012. Dis-function: Learning distance functions interactively. 2012 IEEE Conference on Visual Analytics Science and Technology (VAST) (2012), 83–92. https://doi.org/10.1109/VAST.2012.6400486
[12]
Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Universal Sentence Encoder. arxiv:1803.11175 [cs.CL]
[13]
H. Cheng, A. Cardone, S. Jain, E. Krokos, K. Narayan, S. Subramaniam, and A. Varshney. 2019. Deep-Learning-Assisted Volume Visualization. IEEE Transactions on Visualization and Computer Graphics 25, 2 (Feb 2019), 1378–1391. https://doi.org/10.1109/TVCG.2018.2796085
[14]
T. Cover and P. Hart. 2006. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theor. 13, 1 (Sept. 2006), 21–27. https://doi.org/10.1109/TIT.1967.1053964
[15]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805(2018).
[16]
M. Dowling, J. Wenskovitch, J. T. Fry, S. Leman, L. House, and C. North. 2019. SIRIUS: Dual, Symmetric, Interactive Dimension Reductions. IEEE Transactions on Visualization and Computer Graphics 25, 1(2019), 172–182.
[17]
Michelle Dowling, John Wenskovitch, Peter Hauck, Adam Binford, Nicholas Polys, and Chris North. 2018. A bidirectional pipeline for semantic interaction. In Proc. Workshop on Machine Learning from User Interaction for Visualization and Analytics (at IEEE VIS 2018), Vol. 11.
[18]
Michelle Dowling, Nathan Wycoff, Brian Mayer, John Wenskovitch, Scotland Leman, Leanna House, Nicholas Polys, Chris North, and Peter Hauck. 2019. Interactive Visual Analytics for Sensemaking with Big Text. Big Data Research 16(2019), 49–58. https://doi.org/10.1016/j.bdr.2019.04.003
[19]
A. Endert, R. Chang, C. North, and M. Zhou. 2015. Semantic Interaction: Coupling Cognition and Computation through Usable Interactive Analytics. IEEE Computer Graphics and Applications 35, 4 (July 2015), 94–99. https://doi.org/10.1109/MCG.2015.91
[20]
Alex Endert, Patrick Fiaux, and Chris North. 2012. Semantic interaction for visual text analytics. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, 473–482.
[21]
Mateus Espadoto, Nina Sumiko Tomita Hirata, and Alexandru C Telea. 2020. Deep learning multidimensional projections. Information Visualization(2020), 1473871620909485.
[22]
Jerry Alan Fails and Dan R Olsen Jr. 2003. Interactive machine learning. In Proceedings of the 8th international conference on Intelligent user interfaces. 39–45.
[23]
Sebastian Gehrmann, Hendrik Strobelt, Robert Krüger, Hanspeter Pfister, and Alexander M. Rush. 2020. Visual Interaction with Deep Learning Models through Collaborative Semantic Inference. IEEE Transactions on Visualization and Computer Graphics 26, 1(2020), 884–894. https://doi.org/10.1109/tvcg.2019.2934595
[24]
Tera Marie Green, William Ribarsky, and Brian Fisher. 2009. Building and applying a human cognition model for visual analytics. Information visualization 8, 1 (2009), 1–13.
[25]
R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimensionality Reduction by Learning an Invariant Mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. 1735–1742.
[26]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
[27]
Elad Hoffer and Nir Ailon. 2015. Deep Metric Learning Using Triplet Network. In Similarity-Based Pattern Recognition, Aasa Feragen, Marcello Pelillo, and Marco Loog (Eds.). Springer International Publishing, Cham, 84–92.
[28]
Leanna House, Scotland Leman, and Chao Han. 2015. Bayesian visual analytics: BaVA. Statistical Analysis and Data Mining: The ASA Data Science Journal 8, 1 (Jan. 2015), 1–13.
[29]
X. Hu, L. Bradel, D. Maiti, L. House, C. North, and S. Leman. 2013. Semantics of Directly Manipulating Spatializations. IEEE Transactions on Visualization and Computer Graphics 19, 12(2013), 2052–2059.
[30]
Petra Isenberg, Florian Heimerl, Steffen Koch, Tobias Isenberg, Panpan Xu, Chad Stolper, Michael Sedlmair, Jian Chen, Torsten Möller, and John Stasko. 2017. vispubdata.org: A Metadata Collection about IEEE Visualization (VIS) Publications. IEEE Transactions on Visualization and Computer Graphics 23, 9 (Sept. 2017), 2199–2206. https://doi.org/10.1109/TVCG.2016.2615308
[31]
Mahmut Kaya and Hasan Şakir Bilge. 2019. Deep Metric Learning: A Survey. Symmetry 11, 9 (2019), 1066. https://doi.org/10.3390/sym11091066
[32]
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980(2014).
[33]
Bum Chul Kwon, Min-Je Choi, Joanne Taery Kim, Edward Choi, Young Bin Kim, Soonwook Kwon, Jimeng Sun, and Jaegul Choo. 2018. RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records. IEEE Transactions on Visualization and Computer Graphics 25, 1(2018), 299–309. https://doi.org/10.1109/tvcg.2018.2865027 arXiv:1805.10724
[34]
B. C. Kwon, H. Kim, E. Wall, J. Choo, H. Park, and A. Endert. 2017. AxiSketcher: Interactive Nonlinear Axis Mapping of Visualizations through User Drawings. IEEE Transactions on Visualization and Computer Graphics 23, 1 (Jan 2017), 221–230. https://doi.org/10.1109/TVCG.2016.2598446
[35]
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature 521, 7553 (2015), 436.
[36]
Scotland C Leman, Leanna House, Dipayan Maiti, Alex Endert, and Chris North. 2013. Visual to Parametric Interaction (V2PI). PLOS ONE 8, 3 (March 2013), e50474.
[37]
Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. arxiv:1907.11692 [cs.CL]
[38]
Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research 9, Nov (2008), 2579–2605.
[39]
Alberto González Martínez, Billy Troy Wooton, Nurit Kirshenbaum, Dylan Kobayashi, and Jason Leigh. 2020. Exploring Collections of research publications with Human Steerable AI. (2020), 339–348. https://doi.org/10.1145/3311790.3396646
[40]
Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426(2018).
[41]
Matthew Mullin and Rahul Sukthankar. 2000. Complete Cross-Validation for Nearest Neighbor Classifiers. In Proceedings of the Seventeenth International Conference on Machine Learning(ICML ’00). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 639–646.
[42]
W James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. 2019. Interpretable machine learning: definitions, methods, and applications. arXiv preprint arXiv:1901.04592(2019).
[43]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
[44]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.
[45]
Claudia Perlich, Foster Provost, and Jeffrey S. Simonoff. 2003. Tree Induction vs. Logistic Regression: A Learning-Curve Analysis. J. Mach. Learn. Res. 4, null (Dec. 2003), 211–255. https://doi.org/10.1162/153244304322972694
[46]
Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365(2018).
[47]
Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. 2019. To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks. CoRR abs/1903.05987(2019). arxiv:1903.05987http://arxiv.org/abs/1903.05987
[48]
Peter Pirolli and Stuart Card. 2005. The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. (2005), 2–4. https://analysis.mitre.org/proceedings/Final_Papers_Files/206_Camera_Ready_Paper.pdf
[49]
Meg Pirrung, Nathan Hilliard, Artëm Yankov, Nancy O’Brien, Paul Weidert, Courtney D. Corley, and Nathan O. Hodas. 2018. Sharkzor: Interactive Deep Learning for Image Triage, Sort and Summary. CoRR abs/1802.05316(2018). arxiv:1802.05316http://arxiv.org/abs/1802.05316
[50]
Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics. http://arxiv.org/abs/1908.10084
[51]
Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. arxiv:1609.04747 [cs.LG]
[52]
David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning representations by back-propagating errors. nature 323, 6088 (1986), 533–536.
[53]
Dominik Sacha, Leishi Zhang, Michael Sedlmair, John A Lee, Jaakko Peltonen, Daniel Weiskopf, Stephen C North, and Daniel A Keim. 2016. Visual interaction with dimensionality reduction: A structured literature analysis. IEEE transactions on visualization and computer graphics 23, 1(2016), 241–250.
[54]
Susan S Schiffman, M Lance Reynolds, and Forrest W Young. 1981. Introduction to multidimensional scaling: Theory, methods, and applications. Emerald Group Publishing.
[55]
Jessica Zeitz Self, Michelle Dowling, John Wenskovitch, Ian Crandell, Ming Wang, Leanna House, Scotland Leman, and Chris North. 2018. Observation-Level and Parametric Interaction for High-Dimensional Data Analysis. ACM Trans. Interact. Intell. Syst. 8, 2, Article 15 (June 2018), 36 pages. https://doi.org/10.1145/3158230
[56]
Jessica Zeitz Self, Radha Krishnan Vinayagam, JT Fry, and Chris North. 2016. Bridging the gap between user intention and model parameters for human-in-the-loop data analytics. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics. ACM, 3.
[57]
Jessica Zeitz Self, Radha Krishnan Vinayagam, J. T. Fry, and Chris North. 2016. Bridging the Gap Between User Intention and Model Parameters for Human-in-the-loop Data Analytics. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics (San Francisco, California) (HILDA ’16). ACM, New York, NY, USA, Article 3, 6 pages. https://doi.org/10.1145/2939502.2939505
[58]
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing. 1631–1642.
[59]
Yves Tillé. 2006. Sampling algorithms. Springer.
[60]
Julio Torales, Marcelo O’Higgins, João Mauricio Castaldelli-Maia, and Antonio Ventriglio. 2020. The outbreak of COVID-19 coronavirus and its impact on global mental health. International Journal of Social Psychiatry 66, 4 (2020), 317–320. https://doi.org/10.1177/0020764020915212 arXiv:https://doi.org/10.1177/0020764020915212PMID: 32233719.
[61]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. arxiv:1706.03762 [cs.CL]
[62]
Jian Wang, Feng Zhou, Shilei Wen, Xiao Liu, and Yuanqing Lin. 2017. Deep Metric Learning With Angular Loss. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).
[63]
Kilian Q Weinberger and Lawrence K Saul. 2009. Distance metric learning for large margin nearest neighbor classification.Journal of Machine Learning Research 10, 2 (2009).
[64]
John Wenskovitch, Michelle Dowling, and Chris North. 2020. With Respect to What? Simultaneous Interaction with Dimension Reduction and Clustering Projections. In Proceedings of the 25th International Conference on Intelligent User Interfaces (Cagliari, Italy) (IUI ’20). Association for Computing Machinery, New York, NY, USA, 177–188. https://doi.org/10.1145/3377325.3377516
[65]
John Wenskovitch and Chris North. 2017. Observation-level interaction with clustering and dimension reduction algorithms. In Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. 1–6.
[66]
Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2, 1 (1987), 37 – 52. https://doi.org/10.1016/0169-7439(87)80084-9 Proceedings of the Multivariate Statistical Workshop for Geologists and Geochemists.
[67]
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. ArXiv abs/1910.03771(2019).
[68]
Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. 2020. XLNet: Generalized Autoregressive Pretraining for Language Understanding. arxiv:1906.08237 [cs.CL]
[69]
Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. 2020. Dive into Deep Learning. https://d2l.ai.
[70]
X. Zhu and A. Goldberg. 2009. Introduction to Semi-Supervised Learning. Morgan & Claypool. https://ieeexplore.ieee.org/document/6813505

Cited By

View all

Index Terms

  1. DeepSI: Interactive Deep Learning for Semantic Interaction
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        IUI '21: Proceedings of the 26th International Conference on Intelligent User Interfaces
        April 2021
        618 pages
        ISBN:9781450380171
        DOI:10.1145/3397481
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 14 April 2021

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. BERT
        2. Interactive Deep Learning
        3. Semantic Interaction
        4. Visual Analytics

        Qualifiers

        • Article
        • Research
        • Refereed limited

        Funding Sources

        Conference

        IUI '21
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 746 of 2,811 submissions, 27%

        Upcoming Conference

        IUI '25

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)196
        • Downloads (Last 6 weeks)42
        Reflects downloads up to 18 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media