skip to main content
10.1145/3389189.3397977acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
research-article

Learning and performing assembly processes: an overview of learning and adaptivity in digital assistance systems for manufacturing

Published: 30 June 2020 Publication History

Abstract

Due to digitalization and Industry 4.0, the use of assistance systems on the shop floor has become commonplace nowadays. Besides the economical reasons of increasing productivity and quality, the educational functionalities offer new possibilities. Workers can use the systems to learn new skills, new assembly processes and further more. To offer a good user experience along the learning path, assistance systems should be adaptive and must adjust their level of support according to the current user state and experience. In addition, the application of the systems can become more versatile and they may be used productively beyond the training phase as well. Therefore it is important to consider fundamental principles of learning and different levels of adaptivity along given dimensions. In this paper an overview about both topics is presented and summarized in two morphologic boxes. To realize adaptivity within the software architecture of assistance systems three different approaches were identified. The work was based on an extensive literature review and should be beneficial for the future development and research in this domain.

Supplementary Material

MP4 File (a42-oestreich.mp4)

References

[1]
Mario Aehnelt and Bodo Urban (Eds.). 2015. The Knowledge Gap: Providing Situation-Aware Information Assistance on the Shop Floor. Vol. 9191. Springer, Lecture Notes in Computer Science.
[2]
Mario Aehnelt and Karoline Wegner. 2015. Learn but work!. In Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business - i-KNOW '15, Stefanie Lindstaedt, Tobias Ley, and Harald Sack (Eds.). ACM Press, New York, New York, USA, 1--7.
[3]
Alexander Bannat, Frank Wallhoff, Gerhard Rigoll, Florian Friesdorf, Heiner Bubb, Sonja Stork, Hermann J. Müller, Anna Schubö, Mathey Wiesbeck, Michael F. Zäh. 2008. Towards Optimal Worker Assistance: A Framework for Adaptive Selection and Presentation of Assembly Instructions. 1st International CoTeSys Workshop (2008).
[4]
Rebekka Alm, Mario Aehnelt, Steffen Hadlak, and Bodo Urban. 2015. Annotated Domain Ontologies for the Visualization of Heterogeneous Manufacturing Data. In Human Interface and the Management of Information. Information and Knowledge Design, Sakae Yamamoto (Ed.). Lecture Notes in Computer Science, Vol. 9172. Springer International Publishing, Cham, 3--14.
[5]
Rebekka Alm, Mario Aehnelt, and Bodo Urban. 2015. Processing manufacturing knowledge with ontology-based annotations and cognitive architectures. In Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business - i-KNOW '15, Stefanie Lindstaedt, Tobias Ley, and Harald Sack (Eds.). ACM Press, New York, New York, USA, 1--6.
[6]
Wenke Apt, Michael Schubert, and Steffen Wischmann. [n.d.]. Digitale Assistenzsysteme: Perspektiven und Herausforderungen für den Einsatz in Industrie und Dienstleistungen.
[7]
Ryan S.J.d. Baker, Sidney K. D'Mello, Ma.Mercedes T. Rodrigo, and Arthur C. Graesser. 2010. Better to be frustrated than bored: The incidence, persistence, and impact of learners' cognitive-affective states during interactions with three different computer-based learning environments. International Journal of Human-Computer Studies 68, 4 (2010), 223--241.
[8]
Rainer Bokranz and Kurt Landau. 2012. Handbuch Industrial Engineering: Produktivitätsmanagement mit MTM (2., überarb. aufl. ed.). Schäffer-Poeschel, Stuttgart.
[9]
Dermot P. Browne, Peter Totterdell, and Mike Norman (Eds.). 1990. Adaptive user interfaces. Academic Press, London.
[10]
Daniel Burgos, Colin Tattersall, and Rob Koper. 2006. Representing adaptive eLearning strategies in IMS Learning Design. In Proceedings of the international workshop in learning networks for lifelong competence development. 54--60.
[11]
Carsten Ullrich. 2016. Rules for adaptive Learning and Assistance on the Shop Floor. In 13th International Conference on Cognition and Exploratory Learning in Digital Age, (CELDA 2016. 261--268.
[12]
Allan. Collins, John Seely. Brown, Susan E. Newman, University of Illinois at Urbana-Champaign. Center for the Study of Reading., Bolt, Beranek, and Newman, inc., and National Institute of Education. [n.d.]. Cognitive apprenticeship teaching the craft of reading, writing, and mathtematics.
[13]
Mihaly Csikszentmihalyi and Isabella Selega Csikszentmihalyi. 1992. Optimal experience: Psychological studies of flow in consciousness. Cambridge university press.
[14]
Gregor Engels, Thim Strothmann, and Alexander Teetz. 10/16/2018 - 10/19/2018. Adapt Cases 4 BPM - A Modeling Framework for Process Flexibility in IIoT. In 2018 IEEE 22nd International Enterprise Distributed Object Computing Workshop (EDOCW). IEEE, 59--68.
[15]
John Erpenbeck and Werner Sauter. 2013. So werden wir lernen! Springer Berlin Heidelberg, Berlin, Heidelberg.
[16]
Florian Niedermann, Sylvia Radeschütz, and Bernhard Mitschang. 2011. Business Process Optimization Using Formalized Optimization Patterns. Business Information Systems. BIS 2011. Lecture Notes in Business Information Processing 87 (2011).
[17]
Ekkehart Frieling. 2006. Lernen durch Arbeit: Entwicklung eines Verfahrens zur Bestimmung der Lernmöglichkeiten am Arbeitsplatz. Waxmann, Münster and München.
[18]
Sven Fuchs and Jessica Schwarz. 2017. Towards a Dynamic Selection and Configuration of Adaptation Strategies in Augmented Cognition. In Augmented Cognition. Enhancing Cognition and Behavior in Complex Human Environments, Dylan D. Schmorrow and Cali M. Fidopiastis (Eds.). Lecture Notes in Computer Science, Vol. 10285. Springer International Publishing, Cham, 101--115.
[19]
Con Gottfredson and Bob Mosher. 2011. Innovative performance support: Strategies and practices for learning in the workflow. McGraw Hill Professional.
[20]
Jane Hart. 2020. Modern Workplace Learning 2020. Centre for Learning & Performance Technologies.
[21]
Markus H. Hefter, Alexander Renkl, Werner Riess, Sebastian Schmid, Stefan Fries, and Kirsten Berthold. 2018. Training Interventions to Foster Skill and Will of Argumentative Thinking. The Journal of Experimental Education 86, 3 (2018), 325--343.
[22]
Steven Hoedt, Arno Claeys, Hendrik van Landeghem, and Johannes Cottyn. 2017. The evaluation of an elementary virtual training system for manual assembly. International Journal of Production Research 55, 24 (2017), 7496--7508.
[23]
Reyes Juárez-Ramírez, Raúl Navarro-Almanza, Yail Gomez-Tagle, Guillermo Licea, Carlos Huertas, and German Quinto. 2013. Orchestrating an Adaptive Intelligent Tutoring System: Towards Integrating the User Profile for Learning Improvement. Procedia - Social and Behavioral Sciences 106 (2013), 1986--1999.
[24]
Jessica Klapper, Erdem Gelec, Bastian Pokorni, Moritz Hämmerle, and Robert Rothenberger. [n.d.]. Potenziale digitaler Assistenzsysteme: Aktueller und zukünftiger Einsatz digitaler Assistenzsysteme in produzierenden Unternehmen.
[25]
Klementina Josifovska, Enes Yigitbas, and Gregor Engels. [n.d.]. A Digital Twin-Based Multi-Modal UI Adaptation Framework for Assistance Systems in Industry 4.0. In Human-Computer Interaction. Design Practice in Contemporary Societies. HCII 2019. Lecture Notes in Computer Science, vol 11568. Springer, Cham.
[26]
Oliver Korn, Markus Funk, and Albrecht Schmidt. 2015. Assistive Systems for the Workplace. In Assistive Technologies for Physical and Cognitive Disabilities, Priti Das and Lau Bee Theng (Eds.). IGI Global, 121--135.
[27]
Birgit R. Krogstie, Michael Prilla, and Viktoria Pammer. 2013. Understanding and Supporting Reflective Learning Processes in the Workplace: The CSRL Model. In Scaling up Learning for Sustained Impact (Lecture Notes in Computer Science), Davinia Hernández-Leo, Tobias Ley, Ralf Klamma, and Andreas Harrer (Eds.), Vol. 8095. Springer Berlin Heidelberg, Berlin, Heidelberg, 151--164.
[28]
Neel Mani, Markus Helfert, and Claus Pahl. 2016. Business Process Model Customisation using Domain-driven Controlled Variability Management and Rule Generation. International Journal on Advances in Software 9, 3 & 4 (2016), 179--190.
[29]
Dimitris Mavrikios, Nikolaos Papakostas, Dimitris Mourtzis, and George Chryssolouris. 2013. On industrial learning and training for the factories of the future: a conceptual, cognitive and technology framework. Journal of Intelligent Manufacturing 24, 3 (2013), 473--485.
[30]
Jan Philipp Menn. 2019. Lernerzentrierte digitale Werkzeuge zur Montagetrainingsunterstützung am Beispiel des Sondermaschinenbaus. Ph.D. Dissertation. Technischen Universität Berlin, Berlin.
[31]
Michael Schenk, Tina Haase, Alinde Keller, Dirk Berndt (Ed.). 2016. Herausforderungen der Mensch-Technik-Interaktion für die Gestaltung zukünftiger Arbeitssysteme. Schlick, Christopher M. (Hrsg.): Wissenschaftliche Gesellschaft für Arbeits- und Betriebsorganisation -WGAB- and Hochschulgruppe Arbeits- und Betriebsorganisation e.V., München.
[32]
Johannes Moskaliuk and Ulrike Cress. 2016. Quantitative Methoden zur Erforschung informellen Lernens. In Handbuch Informelles Lernen, Matthias Rohs (Ed.). Springer Fachmedien Wiesbaden, Wiesbaden, 659--674.
[33]
The Duy Nguyen, Randy McFarland, Martin Kleinsorge, Jörg Krüger, and Günther Seliger. 2015. Adaptive Qualification and Assistance Modules for Manual Assembly Workplaces. Procedia CIRP 26 (2015), 115--120.
[34]
Hendrik Oestreich, Torben Töniges, Michael Wojtynek, and Sebastian Wrede. 2019. Interactive Learning of Assembly Processes using Digital Assistance. Procedia Manufacturing 31 (2019), 14--19.
[35]
Randy McFarland, Carsten Reise, Aleksandra Postawa, Günther Seliger (Ed.). 2013. Learnstruments in value creation and learning centered work place design. Universitätsverlag der TU Berlin, Berlin.
[36]
Annika Sabrina Schulz, Franziska Schulz, Ruben Gouveia, and Oliver Korn. 9/5/2018 - 9/7/2018. Branded Gamification in Technical Education. In 2018 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games). IEEE, 1--8.
[37]
Thomas Schuster. 2012. Modellierung, Integration und Analyse von Ressourcen in Geschäftsprozessen. Dr.rer.pol. Fakultät für Wirtschaftswissenschaften, Karlsruhe.
[38]
Jessica Schwarz, Sven Fuchs, and Frank Flemisch. 10/5/2014 - 10/8/2014. Towards a more holistic view on user state assessment in adaptive human-computer interaction. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 1228--1234.
[39]
Sebastian Büttner, Oliver Sand, and Carsten Röcker. 2017. Exploring Design Opportunities for Intelligent Worker Assistance: A New Approach Using Projetion-Based AR and a Novel Hand-Tracking Algorithm. Vol. 10217. Springer International Publishing, Cham.
[40]
Valerie J. Shute and Diego Zapata-Rivera. 2012. Adaptive Educational Systems. In Adaptive Technologies for Training and Education, Paula J. Durlach and Alan M. Lesgold (Eds.). Cambridge University Press, Cambridge, 7--27.
[41]
Robert A. Sottilare, Keith W. Brawner, Anne M. Sinatra, and Joan H. Johnston. [n.d.]. An Updated Concept for a Generalized Intelligent Framework for Tutoring (GIFT). https://gifttutoring.org/attachments/download/2076/Updated%20Concept%20for%20the%20Generalized%20Intelligent%20Framework%20for%20Tutoring_9%20May%202017.pdf
[42]
Jochen Steil and Sebastian Wrede. 2019. Maschinelles Lernen und lernende Assistenzsysteme. Berufe-und Branchen-Screening: Berufsbildung vor neuen Herausforderungen Arbeiten und Lernen mit intelligenten Systemen. KI-Chance oder Bedrohung? (2019), 14.
[43]
Alexander Streicher and Jan D. Smeddinck. 2016. Personalized and Adaptive Serious Games. In Entertainment Computing and Serious Games, Ralf Dörner, Stefan Göbel, Michael Kickmeier-Rust, Maic Masuch, and Katharina Zweig (Eds.). Lecture Notes in Computer Science, Vol. 9970. Springer International Publishing, Cham, 332--377.
[44]
Alexander Teetz. 2019. Adapt cases 4 BPM. Ph.D. Dissertation. UB-PAD - Paderborn University Library.
[45]
Tina Haase, Nathalie Weisenburger, Wilhelm Termath, Ulrike Frosch, Dana Bergmann, and Michael Dick. 2014. The Didactical Design of Virtual Reality Based Learning Environments for Maintenance Technicians. Virtual, Augmented and Mixed Reality. Applications of Virtual and Augmented Reality. VAMR 2014. Lecture Notes in Computer Science 8526 (2014).
[46]
Torben Töniges, Sonja K. Ötting, Britta Wrede, Günter W. Maier, and Gerhard Sagerer. 2017. An Emerging Decision Authority. In Cyber-Physical Systems. Elsevier, 419--430.
[47]
Huong May Truong. 2016. Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in Human Behavior 55 (2016), 1185--1193.
[48]
Nina Tvenge and Kristian Martinsen. 2018. Integration of digital learning in industry 4.0. Procedia Manufacturing 23 (2018), 261--266.
[49]
Carsten Ullrich, Axel Hauser-Ditz, Niklas Kreggenfeld, Christopher Prinz, and Christoph Igel. 2018. Assistenz und Wissensvermittlung am Beispiel von Montage- und Instandhaltungstätigkeiten. In Zukunft der Arbeit - Eine praxisnahe Betrachtung, Steffen Wischmann and Ernst Andreas Hartmann (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 107--122.
[50]
Hendrik Drachsler Wolfgang Greller. 2012. Translating Learning into Numbers: A Generic Framework for Learning Analytics. Educational Technology & Society 15, 3 (2012), 42--57.
[51]
Beverly Park Woolf. 2009. Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann Publishers/Elsevier, Amsterdam and Boston.
[52]
Enes Yigitbas, Ivan Jovanovikj, Kai Biermeier, Stefan Sauer, and Gregor Engels. 2020. Integrated model-driven development of self-adaptive user interfaces. Software and Systems Modeling (2020).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
PETRA '20: Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments
June 2020
574 pages
ISBN:9781450377737
DOI:10.1145/3389189
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

  • NSF: National Science Foundation
  • CSE@UTA: Department of Computer Science and Engineering, The University of Texas at Arlington
  • NCRS: Demokritos National Center for Scientific Research

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 June 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. adaptive instructional systems
  2. assembly
  3. digital assistance systems
  4. literature review
  5. shop floor

Qualifiers

  • Research-article

Conference

PETRA '20
Sponsor:
  • NSF
  • CSE@UTA
  • NCRS

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)48
  • Downloads (Last 6 weeks)2
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media