skip to main content
research-article

First-Order Interpretations of Bounded Expansion Classes

Published: 05 July 2020 Publication History

Abstract

The notion of bounded expansion captures uniform sparsity of graph classes and renders various algorithmic problems that are hard in general tractable. In particular, the model-checking problem for first-order logic is fixed-parameter tractable over such graph classes. With the aim of generalizing such results to dense graphs, we introduce classes of graphs with structurally bounded expansion, defined as first-order transductions of classes of bounded expansion. As a first step towards their algorithmic treatment, we provide their characterization analogous to the characterization of classes of bounded expansion via low treedepth covers (or colorings), replacing treedepth by its dense analogue called shrubdepth.

References

[1]
A. Atminas, V. V. Lozin, and I. Razgon. 2012. Linear time algorithm for computing a small biclique in graphs without long induced paths. In Scandinavian Workshop on Algorithm Theory. Springer, 142--152.
[2]
A. Blumensath and B. Courcelle. 2010. On the Monadic second-order transduction hierarchy. Logical Methods in Computer Science 6, 2 (2010).
[3]
B. Courcelle. 1990. Graph rewriting: An algebraic and logic approach. In Handbook of Theoretical Computer Science. Vol. 2. Elsevier, Amsterdam, Chapter 5, 142--193.
[4]
B. Courcelle. 1990. The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Inform. and Comput. 85 (1990), 12--75.
[5]
B. Courcelle. 1992. The monadic second-order logic of graphs VII: Graphs as relational structures. Theoretical Computer Science 101, 1 (1992), 3--33.
[6]
B. Courcelle. 2009. Linear delay enumeration and monadic second-order logic. Discrete Applied Mathematics 157, 12 (2009), 2675--2700. (Second Workshop on Graph Classes, Optimization, and Width Parameters).
[7]
B. Courcelle and J. Engelfriet. 2012. Graph Structure and Monadic Second-order Logic: A Language-theoretic Approach. Vol. 138. Cambridge University Press.
[8]
B. Courcelle, J. A. Makowsky, and U. Rotics. 2000. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33 (2000), 125--150. Issue 2.
[9]
A. Dawar, M. Grohe, and S. Kreutzer. 2007. Locally excluding a minor. In 22nd Annual IEEE Symposium on Logic in Computer Science. 270--279.
[10]
A. Durand and E. Grandjean. 2007. First-order queries on structures of bounded degree are computable with constant delay. ACM Transactions on Computational Logic (TOCL) 8, 4 (2007), 21.
[11]
A. Durand, N. Schweikardt, and L. Segoufin. 2014. Enumerating answers to first-order queries over databases of low degree. In 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. ACM, 121--131.
[12]
Z. Dvořák, D. Kráľ, and R. Thomas. 2010. Deciding first-order properties for sparse graphs. In 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS’10). 133--142.
[13]
Z. Dvořák, D. Kráľ, and R. Thomas. 2013. Testing first-order properties for subclasses of sparse graphs. J. ACM 60:5 Article 36 (2013).
[14]
K. Eickmeyer and K. Kawarabayashi. 2017. FO model checking on map graphs. In 21st International Symposium on Fundamentals of Computation Theory, (FCT’17). 204--216.
[15]
J. Flum and M. Grohe. 2001. Fixed-parameter tractability, definability, and model checking. SIAM Journal of Computing 31 (2001), 113--145.
[16]
M. Frick and M. Grohe. 2001. Deciding first-order properties of locally tree-decomposable structures. J. ACM 48 (2001), 1148--1206.
[17]
J. Gajarský, P. Hliněný, D. Lokshtanov, J. Obdržálek, S. Ordyniak, M. S. Ramanujan, and S. Saurabh. 2015. FO model checking on posets of bounded width. In 56th Annual Symposium on Foundations of Computer Science (FOCS), 2015. IEEE, 963--974.
[18]
J. Gajarský, P. Hliněný, J. Obdržálek, D. Lokshtanov, and M. S. Ramanujan. 2016. A new perspective on FO model checking of dense graph classes. In 31st Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, 176--184.
[19]
J. Gajarský, S. Kreutzer, J. Nešetřil, P. Ossona de Mendez, M. Pilipczuk, S. Siebertz, and S. Toruńczyk. 2018. First-order interpretations of bounded expansion classes. In 45th International Colloquium on Automata, Languages, and Programming, ICALP. 126:1--126:14.
[20]
R. Ganian, P. Hliněný, J. Nešetřil, J. Obdržálek, and P. Ossona de Mendez. 2019. Shrub-depth: Capturing height of dense graphs. Logical Methods in Computer Science 15, 1 (2019). https://lmcs.episciences.org/5149.
[21]
R. Ganian, P. Hliněný, J. Obdržálek, J. Schwartz, J. Teska, and D. Kráľ. 2013. FO model checking of interval graphs. In International Colloquium on Automata, Languages, and Programming. Springer, 250--262.
[22]
R. Ganian, P. Hliněný, J. Nešetřil, J. Obdržálek, P. Ossona de Mendez, and R. Ramadurai. 2012. When trees grow low: Shrubs and fast MSO1. In MFCS 2012 (Lecture Notes in Computer Science), Vol. 7464. Springer-Verlag, 419--430.
[23]
V. Giakoumakis and J.-M. Vanherpe. 1997. Bi-complement reducible graphs. Adv. Appl. Math. 18 (1997), 389--402.
[24]
M. Grohe. 2001. Generalized model-checking problems for first-order logic. In Annual Symposium on Theoretical Aspects of Computer Science. Springer, 12--26.
[25]
M. Grohe and S. Kreutzer. 2011. Methods for algorithmic meta theorems. In Model Theoretic Methods in Finite Combinatorics (Contemporary mathematics). 181--206.
[26]
M. Grohe, S. Kreutzer, and S. Siebertz. 2017. Deciding first-order properties of nowhere dense graphs. Journal of the ACM 64, 3 (2017), 17:1--17:32.
[27]
F. Gurski and E. Wanke. 2000. The tree-width of clique-width bounded graphs without Kn, n. In WG 2000 (Lecture Notes in Computer Science), Vol. 1928. Springer, 196--205.
[28]
P. Hlinený, F. Pokrývka, and B. Roy. 2017. FO model checking of geometric graphs. In 12th International Symposium on Parameterized and Exact Computation (IPEC’17). 19:1--19:12.
[29]
W. Kazana and L. Segoufin. 2013. Enumeration of first-order queries on classes of structures with bounded expansion. In 16th International Conference on Database Theory. 10--20.
[30]
W. Kazana and L. Segoufin. 2013. Enumeration of first-order queries on classes of structures with bounded expansion. In 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. ACM, 297--308.
[31]
O. Kwon, Mi. Pilipczuk, and S. Siebertz. 2017. On low rank-width colorings. In 43rd International Workshop on Graph-Theoretic Concepts in Computer Science (WG’17). 372--385.
[32]
C. Löding. 2012. Basics on tree automata. In Modern Applications of Automata Theory. 79--110.
[33]
J. Nešetřil and P. Ossona de Mendez. 2006. Tree depth, subgraph coloring and homomorphism bounds. European Journal of Combinatorics 27, 6 (2006), 1022--1041.
[34]
J. Nešetřil and P. Ossona de Mendez. 2008. Grad and classes with bounded expansion. I. Decompositions. European Journal of Combinatorics 29, 3 (2008), 760--776.
[35]
J. Nešetřil and P. Ossona de Mendez. 2008. Grad and classes with bounded expansion. II. Algorithmic aspects. European Journal of Combinatorics 29, 3 (2008), 777--791.
[36]
J. Nešetřil and P. Ossona de Mendez. 2012. Sparsity (Graphs, Structures, and Algorithms). Algorithms and Combinatorics, Vol. 28. Springer. 465 pages.
[37]
S. Oum. 2008. Approximating rank-width and clique-width quickly. ACM Transactions on Algorithms (TALG) 5, 1 (2008), 10.
[38]
D. Seese. 1996. Linear time computable problems and first-order descriptions. Mathematical Structures in Computer Science 5 (1996), 505--526.
[39]
L. Segoufin and W. Kazana. 2011. First-order query evaluation on structures of bounded degree. Logical Methods in Computer Science 7 (2011).

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 21, Issue 4
October 2020
330 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/3409647
  • Editor:
  • Orna Kupferman
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 July 2020
Online AM: 07 May 2020
Accepted: 01 January 2020
Revised: 01 August 2019
Received: 01 October 2018
Published in TOCL Volume 21, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Sparse graph classes
  2. bounded expansion
  3. first-order logic
  4. logical interpretations
  5. model-checking

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • European Union’s Horizon 2020 research and innovation programme ERC Synergy Grant DYNASNET
  • European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie
  • European Union’s Horizon 2020 research and innovation programme ERC Consolidator Grant DISTRUCT
  • GAČR, European Associated Laboratory (LEA STRUCO)
  • NCN
  • European Research Council (ERC)
  • National Science Centre of Poland (NCN) via POLONEZ

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)28
  • Downloads (Last 6 weeks)3
Reflects downloads up to 03 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media