skip to main content
research-article
Public Access

A Smoothness Energy without Boundary Distortion for Curved Surfaces

Published: 18 March 2020 Publication History

Abstract

Current quadratic smoothness energies for curved surfaces either exhibit distortions near the boundary due to zero Neumann boundary conditions or they do not correctly account for intrinsic curvature, which leads to unnatural-looking behavior away from the boundary. This leads to an unfortunate trade-off: One can either have natural behavior in the interior or a distortion-free result at the boundary, but not both. We introduce a generalized Hessian energy for curved surfaces, expressed in terms of the covariant one-form Dirichlet energy, the Gaussian curvature, and the exterior derivative. Energy minimizers solve the Laplace-Beltrami biharmonic equation, correctly accounting for intrinsic curvature, leading to natural-looking isolines. On the boundary, minimizers are as-linear-as-possible, which reduces the distortion of isolines at the boundary. We discretize the covariant one-form Dirichlet energy using Crouzeix-Raviart finite elements, arriving at a discrete formulation of the Hessian energy for applications on curved surfaces. We observe convergence of the discretization in our experiments.

Supplementary Material

stein (stein.zip)
Supplemental movie, appendix, image and software files for, A Smoothness Energy without Boundary Distortion for Curved Surfaces

References

[1]
E. D. Andersen and K. D. Andersen. 2000. The <scp;>MOSEK</scp;> interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization. Kluwer Academic Publishers, 197--232.
[2]
Omri Azencot, Maks Ovsjanikov, Frédéric Chazal, and Mirela Ben-Chen. 2015. Discrete derivatives of vector fields on surfaces—an operator approach. ACM Trans. Graph. 34, 3 (May 2015), 29:1--29:13.
[3]
Ilya Baran and Jovan Popovic. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3 (July 2007), 72--es.
[4]
Miklos Bergou, Max Wardetzky, David Harmon, Denis Zorin, and Eitan Grinspun. 2006. A quadratic bending model for inextensible surfaces. In Proceedings of the 4th Eurographics Symposium on Geometry Processing. 227--230.
[5]
Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. 2008. Discrete elastic rods. ACM Trans. Graph. 27, 3 (Aug. 2008), 63:1--63:12.
[6]
S. Bochner. 1946. Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52, 9 (1946), 776--797.
[7]
Daniele Boffi, Franco Brezzi, and Michel Fortin. 2013. Mixed Finite Element Methods and Applications. Springer-Verlag Berlin.
[8]
Mario Botsch and Leif Kobbelt. 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23, 3 (Aug. 2004), 630--634.
[9]
Dietrich Braess. 2007. Finite Elements (3rd ed.). Cambridge University Press.
[10]
Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt. 2018. Modeling n-symmetry vector fields using higher-order energies. ACM Trans. Graph. 37, 2 (Mar. 2018), 18:1--18:18.
[11]
Susanne C. Brenner. 2015. Forty years of the Crouzeix-Raviart element. Numer. Meth. Part. Differ. Equat. 31, 2 (2015), 367--396.
[12]
Etienne Corman and Maks Ovsjanikov. 2019. Functional characterization of deformation fields. ACM Trans. Graph. 38, 1 (Jan. 2019), 8:1--8:19.
[13]
R. Courant and D. Hilbert. 1924. Methoden der Mathematischen Physik—Erster Band. Julius Springer, Berlin.
[14]
Keenan Crane. 2018. Keenan’s 3D Model Repository. Retrieved from https://www.cs.cmu.edu/kmcrane/Projects/ModelRepository/.
[15]
Keenan Crane, Mathieu Desbrun, and Peter Schröder. 2010. Trivial connections on discrete surfaces. Comput. Graph. For. 29, 5 (2010), 1525--1533.
[16]
Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013a. Robust fairing via conformal curvature flow. ACM Trans. Graph. 32, 4 (July 2013), Article 61,10 pages.
[17]
Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013b. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5 (Oct. 2013), 152:1--152:11.
[18]
Michel Crouzeix and P.-A. Raviart. 1973. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. ESAIM: Math. Modell. Numer. Anal.—Modél. Math. Anal. Numér. 7, R3 (1973), 33--75.
[19]
Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, 317--324.
[20]
Stephan Didas, Joachim Weickert, and Bernhard Burgeth. 2009. Properties of higher order nonlinear diffusion filtering. J. Math. Imag. Vis. 35, 3 (2009), 208--226.
[21]
David L. Donoho and Carrie Grimes. 2003. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Nat. Acad. Sci. 100, 10 (2003), 5591--5596.
[22]
R. J. Duffin. 1959. Distributed and lumped networks. J. Math. Mech. 8, 5 (1959), 793--826.
[23]
Gerhard Dziuk. 1988. Finite Elements for the Beltrami Operator on Arbitrary Surfaces. Springer Berlin, 142--155.
[24]
Elliot English and Robert Bridson. 2008. Animating developable surfaces using nonconforming elements. ACM Trans. Graph. 27, 3 (Aug. 2008), 66:1--66:5.
[25]
Lawrence C. Evans. 2010. Partial Differential Equations: (2nd ed.). American Mathematical Society.
[26]
P. J. Federico. 1982. Descartes on Polyhedra. Springer-Verlag New York Inc.
[27]
Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3 (2007).
[28]
Filippo Gazzola, Hans-Christoph Grunau, and Guido Sweers. 2010. Polyharmonic Boundary Value Problems. Springer-Verlag Berlin.
[29]
Todor Georgiev. 2004. Photoshop healing brush: A tool for seamless cloning. In Proceedings of the European Conference on Computer Vision.
[30]
Stanford Graphics. 2014. The Stanford 3D Scanning Repository. Retrieved from http://graphics.stanford.edu/data/3Dscanrep/.
[31]
Eitan Grinspun, Mathieu Desbrun, Konrad Polthier, Peter Schröder, and Ari Stern. 2006. Discrete differential geometry: An applied introduction. In Proceedings of the ACM SIGGRAPH 2006 Courses (SIGGRAPH’06). ACM, New York, NY.
[32]
Gaël Guennebaud, Benoît Jacob et al. 2010. Eigen v3. Retrieved from http://eigen.tuxfamily.org.
[33]
Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. 2006. On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedic. 123, 1 (Dec. 2006), 89--112.
[34]
Alec Jacobson. 2013. Algorithms and Interfaces for Real-time Deformation of 2D and 3D Shapes. Ph.D. Dissertation. ETH Zürich.
[35]
Alec Jacobson. 2019. gptoolbox—Geometry Processing Toolbox. Retrieved from https://github.com/alecjacobson/gptoolbox.
[36]
Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (July 2011), 78:1--78:8.
[37]
Alec Jacobson, Daniele Panozzo et al. 2019a. libigl: A Simple C++ Geometry Processing Library. Retrieved from http://libigl.github.io/libigl/.
[38]
Alec Jacobson, Daniele Panozzo et al. 2019b. Libigl Tutorial Data. Retrieved from https://github.com/libigl/libigl-tutorial-data.
[39]
Alec Jacobson, Elif Tosun, Olga Sorkine, and Denis Zorin. 2010. Mixed finite elements for variational surface modeling. Comput. Graph. For. 29, 5 (2010), 1565--1574.
[40]
Alec Jacobson, Tino Weinkauf, and Olga Sorkine. 2012. Smooth shape-aware functions with controlled extrema. Comput. Graph. For. 31, 5 (Aug. 2012), 1577--1586.
[41]
jansentee3d. 2018. Dragon Tower. Retrieved from https://www.thingiverse.com/thing:3155868.
[42]
Javo. 2016. Big Gladiator Helmet. Retrieved from https://www.thingiverse.com/thing:1345281.
[43]
Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (July 2007), 71--es.
[44]
Jürgen Jost. 2011. Riemannian Geometry and Geometric Analysis. Springer-Verlag Berlin.
[45]
Kwang I. Kim, Florian Steinke, and Matthias Hein. 2009. Semi-supervised regression using Hessian energy with an application to semi-supervised dimensionality reduction. In Advances in Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta (Eds.). Curran Associates, Inc., 979--987.
[46]
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4 (July 2013), 59:1--59:10.
[47]
Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2015. Stripe patterns on surfaces. ACM Trans. Graph. 34, 4 (July 2015), 39:1--39:11.
[48]
John M. Lee. 1997. Riemannian Manifolds. Springer-Verlag New York, Inc.
[49]
Stamatis Lefkimmiatis, Aurélien Bourquard, and Michael Unser. 2011. Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Proc. 21 (09 2011), 983--95.
[50]
Anat Levin, Dani Lischinski, and Yair Weiss. 2004. Colorization using optimization. In ACM SIGGRAPH 2004 Papers (SIGGRAPH ’04). Association for Computing Machinery, New York, NY, 689--694.
[51]
Yaron Lipman, Raif M. Rustamov, and Thomas A. Funkhouser. 2010. Biharmonic distance. ACM Trans. Graph. 29, 3 (July 2010), 27:1--27:11.
[52]
Beibei Liu, Yiying Tong, Fernando De Goes, and Mathieu Desbrun. 2016. Discrete connection and covariant derivative for vector field analysis and design. ACM Trans. Graph. 35, 3 (Mar. 2016), 23:1--23:17.
[53]
X. Y. Liu, C. H. Lai, and K. A. Pericleous. 2015. A fourth-order partial differential equation denoising model with an adaptive relaxation method. Int. J. Comput. Math. 92, 3 (Mar. 2015), 608--622.
[54]
Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Master’s Thesis. University of Utah.
[55]
M. Lysaker, A. Lundervold, and Xue-Cheng Tai. 2003. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Proc. 12, 12 (Dec. 2003), 1579--1590.
[56]
Richard H. MacNeal. 1949. The Solution of Partial Differential Equations by Means of Electrical Networks. Ph.D. Dissertation. California Institute of Technology.
[57]
MATLAB. 2019. version 9.6 (R2019a). The MathWorks Inc.
[58]
Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (2nd ed.). Springer Science + Business Media, LLC.
[59]
Pascal Peter, Sebastian Hoffmann, Frank Nedwed, Laurent Hoeltgen, and Joachim Weickert. 2016. Evaluating the true potential of diffusion-based inpainting in a compression context. Image Commun. 46, C (Aug. 2016), 40--53.
[60]
Peter Petersen. 2006. Riemannian Geometry (2nd ed.). Springer Science + Business Media, LLC.
[61]
Konrad Polthier and Markus Schmies. 1998. Straightest Geodesics on Polyhedral Surfaces. Springer Berlin, 135--150.
[62]
Alessio Quaglino. 2012. Membrane Locking in Discrete Shell Theories. Ph.D. Dissertation. Universität Göttingen.
[63]
Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1 (Dec. 2009), 1:1--1:11.
[64]
John William Strutt Rayleigh. 1894. The Theory of Sound. Vol. 1. Macmillan and Co.
[65]
Reinhard Scholz. 1978. A mixed method for 4th order problems using linear finite elements. RAIRO. Anal. numér. 12, 1 (1978), 85--90.
[66]
Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2018. The vector heat method. CoRR abs/1805.09170 (2018). Retrieved from http://arxiv.org/abs/1805.09170.
[67]
O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. 2004. Laplacian surface editing. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing. ACM, New York, NY, 175--184.
[68]
Oded Stein, Eitan Grinspun, Max Wardetzky, and Alec Jacobson. 2018. Natural boundary conditions for smoothing in geometry processing. ACM Trans. Graph. 37, 2 (May 2018), 23:1--23:13.
[69]
Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian Whited, Maryann Simmons, and Olga Sorkine-Hornung. 2014. Ink-and-ray: Bas-relief meshes for adding global illumination effects to hand-drawn characters. ACM Trans. Graph. 33, 2 (Apr. 2014), Article 16, 15 pages.
[70]
Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional field synthesis, design, and processing. Comput. Graph. For. 35, 2 (2016), 545--572.
[71]
Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace design for real-time shape deformation. ACM Trans. Graph. 34, 4 (2015), 57:1--57:11.
[72]
Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2017. Error in “Linear Subspace Design for Real-time Shape Deformation.” Technical Report.
[73]
Max Wardetzky. 2006. Discrete Differential Operators on Polyhedral Surfaces—Convergence and Approximation. Ph.D. Dissertation. FU Berlin.
[74]
Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. 2007. Discrete laplace operators: No free lunch. In Proceedings of the 5th Eurographics Symposium on Geometry Processing (SGP’07). Eurographics Association, 33--37.
[75]
Ofir Weber, Roi Poranne, and Craig Gotsman. 2012. Biharmonic coordinates. Comput. Graph. For. 31, 8 (2012), 2409--2422.
[76]
Ofir Weber, Olga Sorkine, Yaron Lipman, and Craig Gotsman. 2007. Context-aware skeletal shape deformationss. Comput. Graph. For. 26, 3 (2007), 265--274.
[77]
Tino Weinkauf, Yotam Gingold, and Olga Sorkine. 2010. Topology-based smoothing of 2D scalar fields with C1-continuity. Comput. Graph. For. 29, 3 (2010).
[78]
Eric W. Weisstein. 2019. Monge Patch. From MathWorld--A Wolfram Web Resource. Retrieved from http://mathworld.wolfram.com/MongePatch.html.
[79]
Roland Weitzenböck. 1885. Invariantentheorie. P. Noordhoff.
[80]
YahooJAPAN. 2013. Plane. Retrieved from https://www.thingiverse.com/thing:182252.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 39, Issue 3
June 2020
179 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3388953
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 March 2020
Accepted: 01 January 2020
Revised: 01 January 2020
Received: 01 May 2019
Published in TOG Volume 39, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Geometry
  2. Hessian
  3. Laplacian
  4. biharmonic
  5. curvature
  6. interpolation
  7. smoothing

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)375
  • Downloads (Last 6 weeks)36
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media