skip to main content
10.1145/3366194.3366318acmotherconferencesArticle/Chapter ViewAbstractPublication PagesricaiConference Proceedingsconference-collections
research-article

Soft tactile sensor and curvature sensor for caterpillar-like soft robot's adaptive motion

Published: 20 September 2019 Publication History

Abstract

Soft robots are designed to interact safely with their environment and move through narrow place in a way a rigid robot cannot. In order for the soft robot to be completely soft, it should consist of as more as soft component. In this paper, a PneuNet soft robot imitating bionic caterpillar are fabricated. In addition, the soft tactile sensor and curvature sensor consisted of silicon rubber and liquid metal are made and characterized. The soft robot combine with the sensors to realize the external environment perception and motion detection. The soft robot can adaptively crawl across different height channel without complex control and can measure the height of the channel.

References

[1]
Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., & Kim, H. J., et al. (2017). Soft robot review. International Journal of Control, Automation and Systems, 15(1), 3--15.
[2]
Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., & Wimbock, T., et al. (2008). Soft robotics. IEEE Robotics & Automation Magazine, 15(3), 20--30.
[3]
Martinez, R. V., Fish, C. R., Chen, X., & Whitesides, G. M. (2012). Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 22(7), 1376--1384.
[4]
Rus D, Tolley MT. 2015. Design, fabrication and control of soft robots. Nature, 521(7553): 467--475
[5]
Sangbae, K., Cecilia, L., & Barry, T. (2013). Soft robotics: a bioinspired evolution in robotics. Trends in Biotechnology, 31(5), 287--294.
[6]
Pfeifer, R., Lungarella, M., & Iida, F. (2012). The challenges ahead for bioinspired "soft" robotics. Communications of the ACM, 55(11), 76.
[7]
Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., & Laschi, C. (2012). Soft-robotic arm inspired by the octopus: ii. from artificial requirements to innovative technological solutions. Bioinspiration & Biomimetics, 7(2), 025005.
[8]
Lin, H. T., Leisk, G. G., & Trimmer, B. (2011). Goqbot: a caterpillar-inspired soft-bodied rolling robot. Bioinspiration & Biomimetics, 6(2), 026007.
[9]
Martinez, R. V., Branch, J. L., Fish, C. R., Jin, L., Shepherd, R. F., & Nunes, R. M. D., et al. (2013). Robotic Tentacles with Three-Dimensional Mobility Based on Flexible Elastomers. WILEY-VCH Verlag.
[10]
Seok, S., Onal, C. D., Cho, K. J., Wood, R. J., Rus, D., & Kim, S. (2013). Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Transactions on Mechatronics, 18(5), 1485--1497.
[11]
Suzumori, K., Endo, S., Kanda, T., Kato, N., & Suzuki, H. (2007). A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot. Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE.
[12]
Nakamaru, Maeda, Hara, & Hashimoto. (2009). Development of novel self-oscillating gel actuator for achievement of chemical robot. IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE.
[13]
Chen Z, Um TI, Bart-Smith H. A novel fabrication of ionic polymer-- metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors and Actuators A: Physical, 2011, 168(1): 131--139
[14]
Chen, Z., Um, T. I., & Bart-Smith, H. (2011). A novel fabrication of ionic polymer--metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors and Actuators: A Physical, 168(1), 131--139.
[15]
Truby, R. L., Wehner, M., Grosskopf, A. K., Vogt, D. M., Uzel, S. G. M., & Wood, R. J., et al. (2018). Soft somatosensitive actuators via embedded 3d printing. Advanced Materials, 1706383.
[16]
Jun, S., Vito, C., Dario, F., & Herbert, S. (2018). Soft robotic grippers. Advanced Materials, 1707035-.
[17]
Pang, Y., Tian, H., Tao, L., Li, Y., Wang, X., & Deng, N., et al. (2016). Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Applied Materials & Interfaces, 8(40), 26458--26462.
[18]
Shay, T., Velev, O., & Dickey, M. D. (2018). Soft electrodes combining hydrogel and liquid metal. Soft Matter, 10.1039.C8SM00337H.
[19]
Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., & Futaba, D. N., et al. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. NATURE NANOTECHNOLOGY, 6(5), 296--301.
[20]
Shi, G., Zhao, Z., Jingong Pai, Lee, I., & Ma, J. (2016). Highly sensitive, wearable, durable strain sensors, and stretchable conductors using graphene/silicon rubber composites. Advanced Functional Materials, 26(42), 7614--7625.
[21]
Tsouti, V., Mitrakos, V., Broutas, P., & Chatzandroulis, S. (2016). Modeling and development of a flexible carbon black based capacitive strain sensor. IEEE Sensors Journal, 1--1.
[22]
Kim, H. J., Sim, K., Thukral, A., & Yu, C. (2017). Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors. Science Advances, 3(9), e1701114.
[23]
Chen, Z., Wang, Z., Li, X., Lin, Y., Luo, N., & Long, M., et al. (2017). Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. Acs Nano, 11(5), 4507.
[24]
Zhong, L. W., Chen, J., & Long, L. (2015). Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy & Environmental Science, 8(8), 2250--2282.
[25]
Lei, J., Huangying, Y. U., & Wang, T. (2016). Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(pams) for spinning gait of quadruped robot. Chinese Journal of Mechanical Engineering, 29(1), 11--20.
[26]
Wang, C., Sim, K., Chen, J., Kim, H., Rao, Z., & Li, Y., et al. (2018). Soft ultrathin electronics innervated adaptive fully soft robots. Advanced Materials, 30(13), 1706695.
[27]
Polygerinos, P., Wang, Z., Overvelde, J. T. B., Galloway, K. C., Wood, R. J., & Bertoldi, K., et al. (2017). Modeling of soft fiber-reinforced bending actuators. IEEE Transactions on Robotics, 31(3), 778--789.
[28]
Dickey, M. D. (2017). Stretchable and soft electronics using liquid metals. Advanced Materials, 29(27), 1606425.
[29]
Lai, Y. C., Deng, J., Liu, R., Hsiao, Y. C., Zhang, S. L., & Peng, W., et al. (2018). Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins. Advanced Materials, 1801114-.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
RICAI '19: Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial Intelligence
September 2019
803 pages
ISBN:9781450372985
DOI:10.1145/3366194
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 September 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Adaptive motion
  2. Curvature sensor
  3. Liquid metal
  4. Tactile sensor

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

RICAI 2019

Acceptance Rates

RICAI '19 Paper Acceptance Rate 140 of 294 submissions, 48%;
Overall Acceptance Rate 140 of 294 submissions, 48%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)43
  • Downloads (Last 6 weeks)4
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media