skip to main content
research-article

Satisfiability of Modal Inclusion Logic: Lax and Strict Semantics

Published: 27 September 2019 Publication History

Abstract

We investigate the computational complexity of the satisfiability problem of modal inclusion logic. We distinguish two variants of the problem: one for the strict and another one for the lax semantics. Both problems turn out to be EXPTIME-complete on general structures. Finally, we show how for a specific class of structures NEXPTIME-completeness for these problems under strict semantics can be achieved.

References

[1]
Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer (Eds.). 2016. Dependence Logic, Theory and Applications. Springer.
[2]
Patrick Blackburn, Maarten de Rijke, and Yde Venema. 2001. Modal Logic. Cambridge University Press.
[3]
E. Clarke, E. A. Emerson, and A. Sistla. 1986. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Prog. Lang. Syst. 8, 2 (1986), 244--263.
[4]
Johannes Ebbing and Peter Lohmann. 2012. Complexity of model checking for modal dependence logic. In Proceedings of the 38th Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM’12) (Lecture Notes in Computer Science), Mária Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and György Turán (Eds.), Vol. 7147. Springer, 226--237.
[5]
Pietro Galliani. 2012. Inclusion and exclusion dependencies in team semantics—On some logics of imperfect information. Ann. Pure Appl. Logic 163, 1 (2012), 68--84.
[6]
Pietro Galliani, Miika Hannula, and Juha Kontinen. 2013. Hierarchies in independence logic. In Proceedings of the Conference on Computer Science Logic (CSL’13) (LIPIcs), Simona Ronchi Della Rocca (Ed.), Vol. 23. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, 263--280.
[7]
Pietro Galliani and Lauri Hella. 2013. Inclusion logic and fixed point logic. In Proceedings of the Conference on Computer Science Logic (CSL’13) (LIPIcs), Simona Ronchi Della Rocca (Ed.), Vol. 23. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 281--295.
[8]
Erich Grädel, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer. 2015. Logics for dependence and independence (Dagstuhl seminar 15261). Dagstuhl Rep. 5, 6 (2015), 70--85.
[9]
Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. 1995. Limits to Parallel Computation: P-completeness Theory. Oxford University Press, Inc., New York, NY.
[10]
Miika Hannula. 2016. The entailment problem in modal and propositional dependence logics. Retrieved from CoRR abs/1608.04301 (2016). http://arxiv.org/abs/1608.04301
[11]
Miika Hannula. 2017. Validity and entailment in modal and propositional dependence logics. In Proceedings of the 26th Conference on Computer Science Logic (CSL’17) (Leibniz International Proceedings in Informatics (LIPIcs)), Valentin Goranko and Mads Dam (Eds.), Vol. 82. Schloss Dagstuhl--Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 28:1--28:17.
[12]
Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. 2018. Complexity of propositional logics in team semantic. ACM Trans. Comput. Logic 19, 1, Article 2 (Jan. 2018), 14 pages.
[13]
Lauri Hella, Antti Kuusisto, Arne Meier, and Jonni Virtema. 2016. Model checking and validity in propositional and modal inclusion logics. Retrieved from CoRR abs/1609.06951 (2016).
[14]
Lauri Hella, Antti Kuusisto, Arne Meier, and Jonni Virtema. 2017. Model checking and validity in propositional and modal inclusion logics. In Proceedings of the 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS’17) (LIPIcs), Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin (Eds.), Vol. 83. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 32:1--32:14.
[15]
Lauri Hella, Antti Kuusisto, Arne Meier, and Heribert Vollmer. 2015. Modal inclusion logic: Being lax is simpler than being strict. In Proceedings of the 40th International Symposium on Mathematical Foundations of Computer Science, (MFCS’15), Part I (Lecture Notes in Computer Science), Giuseppe F. Italiano, Giovanni Pighizzini, and Donald Sannella (Eds.), Vol. 9234. Springer, 281--292.
[16]
Edith Hemaspaandra. 1996. The price of universality. Notre Dame J. Form. Log. 37, 2 (1996), 174--203.
[17]
Neil Immerman. 1982. Relational queries computable in polynomial time (extended abstract). In Proceedings of the 14th ACM Symposium on Theory of Computing, Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber (Eds.). ACM, 147--152.
[18]
Yevgeny Kazakov. 2004. A polynomial translation from the two-variable guarded fragment with number restrictions to the guarded fragment. In Proceedings of the 9th European Conference on Logics in Artificial Intelligence, (JELIA’04) (Lecture Notes in Computer Science), José Júlio Alferes and João Alexandre Leite (Eds.), Vol. 3229. Springer, 372--384.
[19]
Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. 2017. Modal independence logic. J. Log. Comput. 27, 5 (2017), 1333--1352.
[20]
Antti Kuusisto. 2015. A double team semantics for generalized quantifiers. J. Log., Lang. Inform. 24, 2 (2015), 149--191.
[21]
Richard E. Ladner. 1977. The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6, 3 (1977), 467--480.
[22]
Martin Lück. 2018. Canonical models and the complexity of modal team logic. In Proceedings of the 27th EACSL Conference on Computer Science Logic (CSL’18) (LIPIcs), Dan R. Ghica and Achim Jung (Eds.), Vol. 119. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 30:1--30:23.
[23]
Julian-Steffen Müller. 2014. Satisfiability and Model Checking in Team Based Logics. Ph.D. Dissertation. Leibniz University of Hannover.
[24]
Gary Peterson, John Reif, and Salman Azhar. 2001. Lower bounds for multiplayer noncooperative games of incomplete information. Comput. Math. Appl. 41, 7 (2001), 957--992.
[25]
Ian Pratt-Hartmann. 2007. Complexity of the guarded two-variable fragment with counting quantifiers. J. Log. Comput. 17, 1 (2007), 133--155.
[26]
Philippe Schnoebelen. 2002. The complexity of temporal logic model checking. In Proceedings of the 4th Conference on Advances in Modal Logic, Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev (Eds.). King’s College Publications, 393--436.
[27]
Merlijn Sevenster. 2009. Model-theoretic and computational properties of modal dependence logic. J. Log. Comput. 19, 6 (2009), 1157--1173.
[28]
Jouko Väänänen. 2008. Modal dependence logic. In New Perspectives on Games and Interaction, K. Apt and R. van Rooij (Eds.). Amsterdam University Press, 237--254.
[29]
Jouko A. Väänänen. 2007. Dependence Logic—A New Approach to Independence Friendly Logic. London Mathematical Society student texts, Vol. 70. Cambridge University Press. Retrieved from http://www.cambridge.org/de/knowledge/isbn/item1164246/?site_locale=de_DE.
[30]
Jan van Eijck. 2014. Dynamic epistemic logics. In Johan van Benthem on Logic and Information Dynamics, Alexandru Baltag and Sonja Smets (Eds.). Springer, 175--202.
[31]
Moshe Y. Vardi. 1982. The complexity of relational query languages (extended abstract). In Proceedings of the 14th ACM Symposium on Theory of Computing, Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber (Eds.). ACM, 137--146.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 21, Issue 1
January 2020
271 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/3361969
  • Editor:
  • Orna Kupferman
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 September 2019
Accepted: 01 August 2019
Revised: 01 March 2019
Received: 01 October 2017
Published in TOCL Volume 21, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Modal inclusion logic
  2. computational complexity
  3. satisfiability
  4. team semantics

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Deutsche Forschungsgemeinschaft
  • European Commission, Community Research and Development Service

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)1
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media