skip to main content
10.1145/3295500.3356200acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Optimizing the data movement in quantum transport simulations via data-centric parallel programming

Published: 17 November 2019 Publication History

Abstract

Designing efficient cooling systems for integrated circuits (ICs) relies on a deep understanding of the electro-thermal properties of transistors. To shed light on this issue in currently fabricated Fin-FETs, a quantum mechanical solver capable of revealing atomically-resolved electron and phonon transport phenomena from first-principles is required. In this paper, we consider a global, data-centric view of a state-of-the-art quantum transport simulator to optimize its execution on supercomputers. The approach yields coarse-and fine-grained data-movement characteristics, which are used for performance and communication modeling, communication-avoidance, and data-layout transformations. The transformations are tuned for the Piz Daint and Summit supercomputers, where each platform requires different caching and fusion strategies to perform optimally. The presented results make ab initio device simulation enter a new era, where nanostructures composed of over 10,000 atoms can be investigated at an unprecedented level of accuracy, paving the way for better heat management in next-generation ICs.

References

[1]
T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler. 2019. Stateful Dataflow Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous Architectures. In Proc. Int'l Conference for High Performance Computing, Networking, Storage and Analysis.
[2]
Mauro Calderara, Sascha Brück, Andreas Pedersen, Mohammad H. Bani-Hashemian, Joost VandeVondele, and Mathieu Luisier. 2015. Pushing Back the Limit of Ab-initio Quantum Transport Simulations on Hybrid Supercomputers. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '15). ACM, New York, NY, USA, Article 3, 12 pages.
[3]
E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and H. V. Simhadri. 2016. Write-Avoiding Algorithms. In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 648--658.
[4]
Swiss National Supercomputing Centre. 2019. Piz Daint. https://www.cscs.ch/computers/piz-daint/
[5]
Supriyo Datta. 1995. Electronic Transport in Mesoscopic Systems. Cambridge University Press.
[6]
J. Demmel. 2013. Communication-avoiding algorithms for linear algebra and beyond. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing. 585--585.
[7]
Oak Ridge Leadership Computing Facility. 2019. Summit. https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
[8]
Jaime Ferrer, Colin J Lambert, Víctor Manuel García-Suárez, D Zs Manrique, D Visontai, L Oroszlany, Rubén Rodríguez-Ferradás, Iain Grace, SWD Bailey, Katalin Gillemot, et al. 2014. GOLLUM: a next-generation simulation tool for electron, thermal and spin transport. New Journal of Physics 16, 9 (2014), 093029.
[9]
CEA Grenoble. 2013. TB_Sim. http://inac.cea.fr/LSim/TBSim/
[10]
Christoph W Groth, Michael Wimmer, Anton R Akhmerov, and Xavier Waintal. 2014. Kwant: a software package for quantum transport. New Journal of Physics 16, 6 (2014), 063065.
[11]
The Nanoelectronic Modeling Group and Gerhard Klimeck. 2018. NEMO5. https://engineering.purdue.edu/gekcogrp/software-projects/nemo5/
[12]
J. Izquierdo, A. Vega, L. C. Balbás, Daniel Sánchez-Portal, Javier Junquera, Emilio Artacho, Jose M. Soler, and Pablo Ordejón. 2000. Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems. Phys. Rev. B 61 (May 2000), 13639--13646. Issue 20.
[13]
W. Kohn and L. J. Sham. 1965. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140 (Nov 1965), A1133--A1138. Issue 4A.
[14]
Roger Lake, Gerhard Klimeck, R. Chris Bowen, and Dejan Jovanovic. 1997. Single and multiband modeling of quantum electron transport through layered semiconductor devices. Journal of Applied Physics 81, 12 (1997), 7845--7869.
[15]
M. Luisier. 2010. A Parallel Implementation of Electron-Phonon Scattering in Nanoelectronic Devices up to 95k Cores. In SC '10: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis. 1--11.
[16]
Mathieu Luisier, Timothy B. Boykin, Gerhard Klimeck, and Wolfgang Fichtner. 2011. Atomistic Nanoelectronic Device Engineering with Sustained Performances Up to 1.44 PFlop/s. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11). ACM, New York, NY, USA, Article 2, 11 pages.
[17]
Mathieu Luisier, Andreas Schenk, Wolfgang Fichtner, and Gerhard Klimeck. 2006. Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations. Phys. Rev. B 74 (Nov 2006), 205323. Issue 20.
[18]
NanoTCAD. 2017. ViDES. http://vides.nanotcad.com/vides/
[19]
Patrick McCormick. 2019. Yin & Yang: Hardware Heterogeneity & Software Productivity. Talk at SOS23 meeting, Asheville, NC.
[20]
Robert Pawlik. 2016. Current CPUs produce 4 times more heat than hot plates. https://www.cloudandheat.com/blog/current-cpus-produce-4-times-more-heat-than-hot-plates-future-performance-increases-only-possible-by-using-direct-water-cooling/
[21]
E. Pop, S. Sinha, and K. E. Goodson. 2006. Heat Generation and Transport in Nanometer-Scale Transistors. Proc. IEEE 94, 8 (Aug 2006), 1587--1601.
[22]
Christian Stieger, Aron Szabo, Teutë Bunjaku, and Mathieu Luisier. 2017. Ab-initio quantum transport simulation of self-heating in single-layer 2-D materials. Journal of Applied Physics 122, 4 (2017), 045708.
[23]
A. Svizhenko, M. P. Anantram, T. R. Govindan, B. Biegel, and R. Venugopal. 2002. Two-dimensional quantum mechanical modeling of nanotransistors. Journal of Applied Physics 91, 4 (2002), 2343--2354.
[24]
Synopsys. 2019. QuantumATK. https://www.synopsys.com/silicon/quantumatk.html
[25]
Atsushi Togo, Fumiyasu Oba, and Isao Tanaka. 2008. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78 (Oct 2008), 134106. Issue 13.
[26]
D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamberlain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Hannig, E. Jeannot, A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief, N. Maruyama, C. J. Newburn, and M. Pericás. 2017. Trends in Data Locality Abstractions for HPC Systems. IEEE Transactions on Parallel and Distributed Systems 28, 10 (Oct 2017), 3007--3020.
[27]
Joost VandeVondele, Matthias Krack, Fawzi Mohamed, Michele Parrinello, Thomas Chassaing, and Jürg Hutter. 2005. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Computer Physics Communications 167, 2 (2005), 103--128.
[28]
J. Wei. 2008. Challenges in Cooling Design of CPU Packages for High-Performance Servers. Heat Transfer Engineering 29, 2 (2008), 178--187.
[29]
A. N. Ziogas, T. Ben-Nun, G. Indalecio Fernandez, T. Schneider, M. Luisier, and T. Hoefler. 2019. A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport Simulations. In Proc. Int'l Conference for High Performance Computing, Networking, Storage and Analysis.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
November 2019
1921 pages
ISBN:9781450362290
DOI:10.1145/3295500
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

  • IEEE CS

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 November 2019

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

SC '19
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)23
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)A Data-Centric Approach for Efficient and Scalable CFD Implementation on Multi-GPUs ClustersParallel and Distributed Computing, Applications and Technologies10.1007/978-981-99-8211-0_10(93-104)Online publication date: 29-Nov-2023
  • (2022)A data-centric optimization framework for machine learningProceedings of the 36th ACM International Conference on Supercomputing10.1145/3524059.3532364(1-13)Online publication date: 28-Jun-2022
  • (2022)Computational perspective on recent advances in quantum electronics: from electron quantum optics to nanoelectronic devices and systemsJournal of Physics: Condensed Matter10.1088/1361-648X/ac49c634:16(163001)Online publication date: 22-Feb-2022
  • (2019)A data-centric approach to extreme-scale ab initio dissipative quantum transport simulationsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3295500.3357156(1-13)Online publication date: 17-Nov-2019

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media