skip to main content
research-article
Public Access

A material point method for thin shells with frictional contact

Published: 30 July 2018 Publication History

Abstract

We present a novel method for simulation of thin shells with frictional contact using a combination of the Material Point Method (MPM) and subdivision finite elements. The shell kinematics are assumed to follow a continuum shell model which is decomposed into a Kirchhoff-Love motion that rotates the mid-surface normals followed by shearing and compression/extension of the material along the mid-surface normal. We use this decomposition to design an elastoplastic constitutive model to resolve frictional contact by decoupling resistance to contact and shearing from the bending resistance components of stress. We show that by resolving frictional contact with a continuum approach, our hybrid Lagrangian/Eulerian approach is capable of simulating challenging shell contact scenarios with hundreds of thousands to millions of degrees of freedom. Without the need for collision detection or resolution, our method runs in a few minutes per frame in these high resolution examples. Furthermore we show that our technique naturally couples with other traditional MPM methods for simulating granular and related materials.

Supplementary Material

ZIP File (147-356.zip)
Supplemental files.
MP4 File (147-356.mp4)
MP4 File (a147-guo.mp4)

References

[1]
T. Belytschko, W. Liu, B. Moran, and K. Elkhodary. 2013. Nonlinear finite elements for continua and structures. John Wiley and sons.
[2]
J. Bonet and R. Wood. 2008. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press.
[3]
R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust Treatment of Collisions, Contact and Friction for Cloth Animation. ACM Trans Graph 21, 3 (2002), 594--603.
[4]
R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim (SCA '03). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 28--36.
[5]
Edwin Catmull and James Clark. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-aided design 10, 6 (1978), 350--355.
[6]
B. Chen and M. Govindaraj. 1995. A Physically Based Model of Fabric Drape Using Flexible Shell Theory. Text Res J 65, 6 (1995), 324--330.
[7]
F. Cirak and M. Ortiz. 2001. Fully C1-conforming subdivision elements for finite deformation thin-shell analysis. Int J Num Meth Eng 51, 7 (2001), 813--833.
[8]
F. Cirak, M. Ortiz, and P. Schröder. 2000. Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Num Meth Eng 47, 12 (2000), 2039--2072.
[9]
David Clyde. 2017. Numerical Subdivision Surfaces for Simulation and Data Driven Modeling of Woven Cloth. Ph.D. Dissertation. University of California, Los Angeles.
[10]
D. Clyde, J. Teran, and R. Tamstorf. 2017. Modeling and data-driven parameter estimation for woven fabrics. In Proc ACM SIGGRAPH/Eurograp Symp Comp Anim (SCA '17). ACM, New York, NY, USA, 17:1--17:11.
[11]
J. Collier, B. Collier, G. O'Toole, and S. Sargand. 1991. Drape prediction by means of finite-element analysis. J Textile Inst 82, 1 (1991), 96--107.
[12]
G. Daviet and F. Bertails-Descoubes. 2016. A Semi-implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans Graph 35, 4 (2016), 102:1--102:13.
[13]
R. Echter, B. Oesterle, and M. Bischoff. 2013. A hierarchic family of isogeometric shell finite elements. Comp Meth App Mech Eng 254 (2013), 170 -- 180.
[14]
J. Eischen, S. Deng, and T. Clapp. 1996. Finite-element modeling and control of flexible fabric parts. IEEE Comp Graph App 16, 5 (1996), 71--80.
[15]
O. Etzmuss, J. Gross, and W. Strasser. 2003a. Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Trans Vis Comp Graph 9, 4 (Oct. 2003), 538--550.
[16]
O. Etzmuss, M. Keckeisen, and W. Strasser. 2003b. A fast finite element solution for cloth modeling. In Proc 11th Vac Conf Comp Graph App (PG '03). IEEE Computer Society, Washington, DC, USA, 244--254.
[17]
Y. Fan, J. Litven, D. Levin, and D. Pai. 2013. Eulerian-on-Lagrangian Simulation. ACM Trans Graph 32, 3 (2013), 22:1--22:9.
[18]
Y. Fan, J. Litven, and D. Pai. 2014. Active Volumetric Musculoskeletal Systems. ACM Trans Graph 33, 4 (2014), 152:1--152:9.
[19]
C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. 2017. A Polynomial Particle-in-cell Method. ACM Trans Graph 36, 6 (Nov. 2017), 222:1--222:12.
[20]
L. Gan, N. Ly, and G. Steven. 1995. A study of fabric deformation using nonlinear finite elements. Text Res J 65, 11 (1995), 660--668.
[21]
Y. Gingold, A. Secord, J. Han, E. Grinspun, and D. Zorin. 2004. A discrete model for inelastic deformation of thin shells. In Tech Report: Courant Institute of Mathematical Sciences, New York University.
[22]
A. Golas, R. Narain, and M. Lin. 2014. Continuum modeling of crowd turbulence. Phys Rev E 90 (2014), 042816. Issue 4.
[23]
O. Gonzalez and A. Stuart. 2008. A first course in continuum mechanics. Cambridge University Press.
[24]
E. Grinspun, F. Cirak, P. Schröder, and M. Ortiz. 1999. Non-linear mechanics and collisions for subdivision surfaces. Technical report, Caltech Multi-Res Modeling Group (1999).
[25]
E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim (SCA '03). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 62--67.
[26]
E. Grinspun, P. Krysl, and P. Schröder. 2002. CHARMS: A simple framework for adaptive simulation. ACM Trans Graph 21, 3 (2002), 281--290.
[27]
E. Grinspun and P. Schröder. 2001. Normal bounds for subdivision-surface interference detection. In IEEE Viz. 333--340.
[28]
Q. Guo, X. Han, C. Fu, T. Gast, R. Tamstorf, and J. Teran. 2018. A Material Point Method for Thin Shells with Frictional Contact: Supplementary Technical Document. (2018).
[29]
D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans Graph 27, 3 (2008), 23:1--23:4.
[30]
C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017).
[31]
C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-In-Cell Method. ACM Trans Graph 34, 4 (2015), 51:1--51:10.
[32]
C. Kane, E. Repetto, M. Ortiz, and J. Marsden. 1999. Finite element analysis of nonsmooth contact. Comp Meth App Mech Eng 180, 1 (1999), 1 -- 26.
[33]
P. Kaufmann, S. Martin, M. Botsch, and M. Gross. 2009. Implementation of discontinuous Galerkin Kirchhoff-Love shells. ETH Zurich, Department of Computer Science, Technical Report No. 622 (2009).
[34]
J. Kiendl, K. Bletzinger, J. Linhard, and R. Wuchner. 2009. Isogeometric shell analysis with Kirchhoff-Love elements. Comp Meth App Mech Eng 198, 49 (2009), 3902 -- 3914.
[35]
J. Kiendl, M. Hsu, M. Wu, and A. Reali. 2015. Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comp Meth App Mech Eng 291, Supplement C (2015), 280--303.
[36]
G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C.Jiang, and J. Teran. 2016. Drucker-Prager Elastoplasticity for Sand Animation. ACM Trans Graph 35, 4 (2016), 103:1--103:12.
[37]
D. Levin, J. Litven, G. Jones, S. Sueda, and D. Pai. 2011. Eulerian Solid Simulation with Contact. ACM Trans Graph 30, 4 (2011), 36:1--36:10.
[38]
D. Li, S. Sueda, D. Neog, and D. Pai. 2013. Thin Skin Elastodynamics. ACM Trans Graph 32, 4 (2013), 49:1--49:10.
[39]
Q. Long, P. Bornemann, and F. Cirak. 2012. Shear flexible subdivision shells. Int J Num Meth Eng 90, 13 (2012), 1549--1577.
[40]
L. De Lorenzis, P. Wriggers, and T. Hughes. 2014. Isogeometric contact: a review. GAMM-Mitteilungen 37, 1 (2014), 85--123.
[41]
J. Lu. 2011. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact. Comp Meth App Mech Eng 200, 5 (2011), 726 -- 741.
[42]
J. Lu and C. Zheng. 2014. Dynamic cloth simulation by isogeometric analysis. Comp Meth App Mech Eng 268, Supplement C (2014), 475 -- 493.
[43]
X. Man and C. Swan. 2007. A mathematical modeling framework for analysis of functional clothing. J Eng Fibers Fabrics 2, 3 (2007), 10--28. http://www.jeffjournal.org/papers/Volume2/Swan(6-14R1).pdf
[44]
S. Martin, P. Kaufmann, M. Botsch, E. Grinspun, and M. Gross. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans Graph 29, 4 (2010), 39:1--39:10.
[45]
M. Matzen and M. Bischoff. 2016. A weighted point-based formulation for isogeometric contact. Comp Meth App Mech Eng 308, Supplement C (2016), 73--95.
[46]
M. Matzen, T. Cichosz, and M. Bischoff. 2013. A point to segment contact formulation for isogeometric, NURBS based finite elements. Comp Meth App Mech Eng 255, Supplement C (2013), 27--39.
[47]
A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail Preserving Continuum Simulation of Straight Hair. ACM Trans Graph 28, 3 (2009), 62:1--62:6.
[48]
R. Mindlin. 1951. Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J App Mech 18 (1951), 31--38.
[49]
R. Narain, A. Golas, S. Curtis, and M. Lin. 2009. Aggregate Dynamics for Dense Crowd Simulation. ACM Trans Graph 28, 5 (2009), 122:1--122:8.
[50]
R. Narain, A. Golas, and M. Lin. 2010. Free-flowing granular materials with two-way solid coupling. ACM Trans Graph 29, 6 (2010), 173:1--173:10.
[51]
R. Narain, T. Pfaff and J. O'Brien. 2013. Folding and crumpling adaptive sheets. ACM Trans Graph 32, 4 (July 2013), 51:1--51:8.
[52]
L. Noels and R. Radovitzky. 2008. A new discontinuous Galerkin method for Kirchhoff-Love shells. Comp Meth App Mech Eng 197 (2008), 2901--2929.
[53]
M. Otaduy, R. Tamstorf, D. Steinemann, and M. Gross. 2009. Implicit Contact Handling for Deformable Objects. Comp Graph Forum 28, 2 (2009).
[54]
E. Sifakis, S. Marino, and J. Teran. 2008. Globally Coupled Collision Handling Using Volume Preserving Impulses. In Proc 2008 ACM SIGGRAPH/Eurographics Symp Comp Anim. 147--153.
[55]
J. Simo and D. Fox. 1989. On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comp Meth App Mech Eng 72, 3 (1989), 267 -- 304.
[56]
Jos Stam. 1998. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM, 395--404.
[57]
A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A Material Point Method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1--102:10.
[58]
M. Tang, H. Wang, L. Tang, R. Tong, and D. Manocha. 2016. CAMA: Contact-Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth Simulation. Comp Graph Forum 35, 2 (2016), 511--521.
[59]
A. Temizer, P. Wriggers, and T. Hughes. 2011. Contact treatment in isogeometric analysis with NURBS. Comp Meth App Mech Eng 200, 9 (2011), 1100 -- 1112.
[60]
Y. Teng, D. Levin, and T. Kim. 2016. Eulerian Solid-fluid Coupling. ACM Trans Graph 35, 6 (2016), 200:1--200:8.
[61]
D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. 1987. Elastically Deformable Models. SIGGRAPH Comput Graph 21, 4 (1987), 205--214.
[62]
B. Thomaszewski, M. Wacker, and W. Strasser. 2006. A consistent bending model for cloth simulation with corotational subdivision finite elements. In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim. Eurographics Association, 107--116.
[63]
A. Wawrzinek, K. Hildebrandt, and K. Polthier. 2011. Koiter's thin shells on Catmull-Clark limit surfaces. In Vision, Modeling, and Visualization (2011), Peter Eisert, Joachim Hornegger, and Konrad Polthier (Eds.). The Eurographics Association.
[64]
Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1--160:20.
[65]
Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005), 965--972.

Cited By

View all

Index Terms

  1. A material point method for thin shells with frictional contact

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 37, Issue 4
    August 2018
    1670 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3197517
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 July 2018
    Published in TOG Volume 37, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. MPM
    2. cloth
    3. elasticity thin shells
    4. subdivision finite elements

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)393
    • Downloads (Last 6 weeks)53
    Reflects downloads up to 26 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media