skip to main content
review-article

Report on the Information Retrieval Festival (IRFest2017)

Published: 02 August 2017 Publication History

Abstract

The Information Retrieval Festival took place in April 2017 in Glasgow. The focus of the workshop was to bring together IR researchers from the various Scottish universities and beyond in order to facilitate more awareness, increased interaction and reflection on the status of the field and its future. The program included an industry session, research talks, demos and posters as well as two keynotes. The first keynote was delivered by Prof. Jaana Kekalenien, who provided a historical, critical reflection of realism in Interactive Information Retrieval Experimentation, while the second keynote was delivered by Prof. Maarten de Rijke, who argued for more Artificial Intelligence usage in IR solutions and deployments. The workshop was followed by a 'Tour de Scotland' where delegates were taken from Glasgow to Aberdeen for the European Conference in Information Retrieval (ECIR 2017)

References

[1]
S. Attardo. Encyclopedia of humor studies. SAGE Publications, 2014.
[2]
E. Bakkal, I. S. Altingovde, and I. H. Toroslu. Cost-aware result caching for meta-search engines. In Proc. of SIGIR 2015, pages 739--742, 2015.
[3]
L. Boratto. Group recommender systems: State of the art, emerging aspects and techniques, and research challenges. In European Conference on Information Retrieval, pages 889--892. Springer, 2016.
[4]
L. Boratto and S. Carta. State-of-the-art in group recommendation and new approaches for automatic identification of groups. In Information retrieval and mining in distributed environments, pages 1--20. Springer, 2010.
[5]
C. Efthymiou and M. Halvey. Evaluating the Social Acceptability of Voice Based Smartwatch Search, pages 267--278. Springer International Publishing, Cham, 2016. ISBN 978-3-319-48051-0. 20. URL http://dx.doi.org/10.1007/978-3-319-48051-0_20.
[6]
A. Fang, C. Macdonald, I. Ounis, and P. Habel. Using word embedding to evaluate the coherence of topics from twitter data. In Proceedings of the 39th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2016.
[7]
A. Fang, C. Macdonald, I. Ounis, P. Habel, and X. Yang. Exploring time-sensitive variational bayesian inference lda for social media data. In Proceedings of the 39th European Conference on Information Retrieval, 2017.
[8]
E. Graf and L. Azzopardi. A methodology for building a patent test collection for prior art search. In EVIA@ NTCIR, 2008.
[9]
F. Hafizoglu, E. C. Kucukoglu, and I. S. Altingovde. On the efficiency of selective search. In Proc. of ECIR 2017, 2017.
[10]
G. Hatcher, W. Ion, R. MacLachlan, A. Wodehouse, M. Sheridan, and B. Simpson. Humour processes for creative engineering design. In 14th International Design Conference (Design), pages 1015--1024, 2016.
[11]
F. Hopfgartner, T. Brodt, J. Seiler, B. Kille, A. Lommatzsch, M. Larson, R. Turrin, and A. Serény. Benchmarking news recommendations: The CLEF newsreel use case. SIGIR Forum, 49(2):129--136, 2015. URL http://doi.acm.org/10.1145/2888422.2888443.
[12]
B. Kahveci, I. S. Altingovde, and O. Ulusoy. Integrating social features into mobile local search. Journal of Systems and Software, 122:155--164, 2016.
[13]
K. Knautz, D. R. Neal, S. Schmidt, T. Siebenlist, and W. G. Stock. Finding emotional-laden resources on the world wide web. Information, 2(1):217246, 2011. URL http://www.mdpi.com/2078-2489/2/1/217.
[14]
H.-J. Lee and D. Neal. 2007 Annual Meeting of the American Society for Information Science and Technology.
[15]
H. Liu, P. Mulholland, D. Song, V. Uren, and S. Ruger. Applying information foraging theory to understand user interaction with content-based image retrieval. In Proceedings of the third symposium on Information interaction in context, pages 135--144. ACM, 2010.
[16]
J. Manotumruksa, C. Macdonald, and I. Ounis. Matrix factorisation with word embeddings for rating prediction on location-based social networks. In Proc. of ECIR, 2017.
[17]
D. Maxwell, L. Azzopardi, K. Jarvelin, and H. Keskustalo. An initial investigation into fixed and adaptive stopping strategies. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '15, pages 903--906, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3621-5. URL http://doi.acm.org/10.1145/2766462.2767802.
[18]
D. Maxwell, L. Azzopardi, K. Jarvelin, and H. Keskustalo. Searching and stopping: An analysis of stopping rules and strategies. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM '15, pages 313--322, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3794-6. URL http://doi.acm.org/10.1145/2806416.2806476.
[19]
R. McCreadie, C. Macdonald, and I. Ounis. Eaims: Emergency analysis identification and management system. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 1101--1104. ACM, 2016.
[20]
G. McDonald, C. Macdonald, I. Ounis, and T. Gollins. Towards a classifier for digital sensitivity review. In Proceedings of the 36th European Conference on Information Retrieval, pages 500--506. Springer-Verlag New York, Inc., 2014.
[21]
G. McDonald, C. Macdonald, and I. Ounis. Using part-of-speech n-grams for sensitive-text classification. In Proceedings of the 2015 International Conference on The Theory of Information Retrieval, ICTIR '15, pages 381--384, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3833-2. URL http://doi.acm.org/10.1145/2808194.2809496.
[22]
G. McDonald, C. Macdonald, and I. Ounis. Enhancing sensitivity classification with semantic features using word embeddings. In Proceedings of the 39th European Conference on Information Retrieval, Aberdeen, Scotland, 2017. Springer, LNCS.
[23]
R. Mehrotra and E. Yilmaz. Query log mining for inferring user tasks and needs. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 284--288. Springer International Publishing, 2016.
[24]
R. Mehrotra, P. Bhattacharya, and E. Yilmaz. Uncovering task based behavioral heterogeneities in online search behavior. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 1049--1052. ACM, 2016.
[25]
Y. Moshfeghi and J. M. Jose. An Effective Implicit Relevance Feedback Technique Using Affective, Physiological and Behavioural Features. In Proceedings of the 36th International ACM SIGIR Conference on Research and Develop- ment in Information Retrieval, SIGIR '13, pages 133--142, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2034-4. URL http://doi.acm.org/10.1145/2484028.2484074.
[26]
Y. Moshfeghi, L. R. Pinto, F. E. Pollick, and J. M. Jose. Understanding Relevance: An fMRI Study. In P. Serdyukov, P. Braslavski, S. O. Kuznetsov, J. Kamps, S. Rüger, E. Agichtein, I. Segalovich, and E. Yilmaz, editors, Advances in Information Retrieval: 35th European Conference on IR Research, ECIR 2013, Moscow, Russia, March 24-27, 2013. Proceedings, pages 14--25, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-36973-5. 2. URL http://dx.doi.org/10.1007/978-3-642-36973-5_2
[27]
Y. Moshfeghi, P. Triantafillou, and F. E. Pollick. Understanding information need: An fmri study. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '16, pages 335--344, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4069-4. URL http://doi.acm.org/10.1145/2911451.2911534.
[28]
A. Mourad, F. Scholer, and M. Sanderson. Language influences on tweeter geolocation. In In the Proceedings of European Conference on Information Retrieval, 2017.
[29]
K. D. Naini, I. S. Altingovde, and W. Siberski. Scalable and efficient web search result diversification. TWEB, 10(3):15:1--15:30, 2016.
[30]
D. M. Neal. Emotion-based tags in photographic documents: The interplay of text, image, and social influence / les tiquettes bases sur des motions dans les documents photographiques: l'interaction entre le texte, l'image et l'influence sociale. Canadian Journal of Information and Library Science, 34(3):329353, 2010.
[31]
K. Ong. Using information foraging theory to understand search behavior in different environments. In Proceedings of the 2017 Conference on Conference Human Information Interaction and Retrieval, pages 411--413. ACM, 2017.
[32]
A. M. Ozdemiray and I. S. Altingovde. Explicit search result diversification using score and rank aggregation methods. JASIST, 66(6):1212--1228, 2015.
[33]
D. R. Pennington. the most passionate cover ive seen: emotional information in fan-created u2 music videos. Journal of Documentation, 72(3):569590, Sep 2016.
[34]
Y. Ren, M. Tomko, K. Ong, and M. Sanderson. How people use the web in large indoor spaces. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pages 1879--1882. ACM, 2014.
[35]
R. Smith. Peer review: A flawed process at the heart of science and journals. Journal of the Royal Society of Medicine, 99(4):178--182, 2006.
[36]
A. Ullah and H. Liu. Theory-based user modeling for personalized interactive information retrieval. 2016.
[37]
C. Wilkie and L. Azzopardi. Relating retrievability, performance and length. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 937--940. ACM, 2013.
[38]
C. Wilkie and L. Azzopardi. Best and fairest: An empirical analysis of retrieval system bias. In European Conference on Information Retrieval, pages 13--25. Springer International Publishing, 2014.
[39]
C. Wilkie and L. Azzopardi. A topical approach to retrievability bias estimation. In Proceedings of the 2016 ACM International Conference on the Theory of Information Retrieval, ICTIR '16, pages 119--122, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4497-5. URL http://doi.acm.org/10.1145/2970398.2970437.
[40]
S. Yigit-Sert, I. S. Altingovde, and Ö. Ulusoy. Towards detecting media bias by utilizing user comments. In Proc. of WebSci 2016, pages 374--375, 2016.
  1. Report on the Information Retrieval Festival (IRFest2017)

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM SIGIR Forum
    ACM SIGIR Forum  Volume 51, Issue 1
    June 2017
    73 pages
    ISSN:0163-5840
    DOI:10.1145/3130332
    Issue’s Table of Contents
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 02 August 2017
    Published in SIGIR Volume 51, Issue 1

    Check for updates

    Qualifiers

    • Review-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 42
      Total Downloads
    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 06 Nov 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media