skip to main content
research-article

Two-Scale Topology Optimization with Microstructures

Published: 25 July 2017 Publication History

Abstract

In this article, we present a novel two-scale framework to optimize the structure and the material distribution of an object given its functional specifications. Our approach utilizes multi-material microstructures as low-level building blocks of the object. We start by precomputing the material property gamut—the set of bulk material properties that can be achieved with all material microstructures of a given size. We represent the boundary of this material property gamut using a level set field. Next, we propose an efficient and general topology optimization algorithm that simultaneously computes an optimal object topology and spatially varying material properties constrained by the precomputed gamut. Finally, we map the optimal spatially varying material properties onto the microstructures with the corresponding properties to generate a high-resolution printable structure. We demonstrate the efficacy of our framework by designing, optimizing, and fabricating objects in different material property spaces on the level of a trillion voxels, that is, several orders of magnitude higher than what can be achieved with current systems.

Supplementary Material

zhu (zhu.zip)
Supplemental movie, appendix, image and software files for, Two-Scale Topology Optimization with Microstructures
MP4 File (tog-35.mp4)

References

[1]
Joe Alexandersen and Boyan S. Lazarov. 2015. Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput. Methods Appl. Mech. Eng. 290 (2015), 156--182.
[2]
Grégoire Allaire. 2012. Shape Optimization by the Homogenization Method. Vol. 146. Springer Science 8 Business Media.
[3]
G. Allaire and R.V. Kohn. 1993. Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Quaterly of Applied Mathematics 51, 4 (1993), 643--674.
[4]
Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4 (2013), 103:1--103:10.
[5]
Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. 2014. Design of manufacturable 3D extremal elastic microstructure. Mech. Mater. 69, 1 (2014), 1--10.
[6]
Sahab Babaee, Jongmin Shim, James C. Weaver, Elizabeth R. Chen, Nikita Patel, and Katia Bertoldi. 2013. 3D soft metamaterials with negative poisson’s ratio. Adv. Mater. 25, 36 (2013), 5044--5049.
[7]
Martin P. Bendsøe. 1989. Optimal shape design as a material distribution problem. Struct. Optimiz. 1, 4 (1989), 193--202.
[8]
Martin P. Bendsøe and Ole Sigmund. 1999. Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 9--10 (1999), 635--654.
[9]
Martin Philip Bendsøe and Ole Sigmund. 2004. Topology Optimization: Theory, Methods, and Applications. Springer Science 8 Business Media.
[10]
Haimasree Bhatacharya, Yue Gao, and Adam Bargteil. 2011. A level-set method for skinning animated particle data. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 17--24.
[11]
Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (2010), 63:1--63:10.
[12]
J. Bonet and R. D. Wood. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.
[13]
Joseph E. Cadman, Shiwei Zhou, Yuhang Chen, and Qing Li. 2013. On design of multi-functional microstructural materials. J. Mater. Sci. 48, 1 (2013), 51--66.
[14]
Vivien J. Challis and James K. Guest. 2009. Level set topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Eng. 79, 10 (2009), 1284--1308.
[15]
Desai Chen, David I. W. Levin, Piotr Didyk, Pitchaya Sitthi-Amorn, and Wojciech Matusik. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM Trans. Graph. 32, 4 (2013), 135:1--135:10.
[16]
Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An asymptotic numerical method for inverse elastic shape design. ACM Trans. Graph. 33, 4 (Aug. 2014), 95:1--95:11.
[17]
P. G. Coelho, P. R. Fernandes, J. M. Guedes, and H. C. Rodrigues. 2008. A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct. Multidiscipl. Optimiz. 35, 2 (2008), 107--115.
[18]
Christian Dick, Joachim Georgii, and Rüdiger Westermann. 2011. A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul. Model. Pract. Theory 19, 2 (2011), 801--816.
[19]
Yue Dong, Jiaping Wang, Fabio Pellacini, Xin Tong, and Baining Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (2010), 62:1--62:10.
[20]
Randal Douc. 2005. Comparison of resampling schemes for particle filtering. In 4th International Symposium on Image and Signal Processing and Analysis (ISPA’05). 64--69.
[21]
R. B. Haber, P. Pedersen, and J. E. Taylor. 1994. An analytical model to predict optimal material properties in the context of optimal structural design. Urbana 51 (1994), 61801.
[22]
Miloš Hašan, Martin Fuchs, Wojciech Matusik, Hanspeter Pfister, and Szymon Rusinkiewicz. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4 (2010), 61:1--61:10.
[23]
Steven G. Johnson. 2014. The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt.
[24]
Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3 (2009), 51:1--51:8.
[25]
Roderic Lakes. 1987. Foam structures with a negative poisson’s ratio. Science 235, 4792 (1987), 1038--1040.
[26]
Robert Lipton. 1994. Optimal bounds on effective elastic tensors for orthotropic composites. Proc. Roy. Soc. A 444, 1921 (1994), 399--410.
[27]
Jonàs Martínez, Jérémie Dumas, Sylvain Lefebvre, and Li-Yi Wei. 2015. Structure and appearance optimization for controllable shape design. ACM Trans. Graph. 34, 6, Article 229 (Oct. 2015), 11 pages.
[28]
Graeme W. Milton and Andrej V. Cherkaev. 1995. Which elasticity tensors are realizable? J. Eng. Mater. Technol. 117 (1995), 483.
[29]
P. B. Nakshatrala, D. A. Tortorelli, and K. B. Nakshatrala. 2013. Nonlinear structural design using multiscale topology optimization. Comput. Methods Appl. Mech. Eng. 261 (2013), 167--176.
[30]
Stanley Osher and Ronald Fedkiw. 2006. Level Set Methods and Dynamic Implicit Surfaces. Vol. 153. Springer Science 8 Business Media.
[31]
Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic textures for additive fabrication. ACM Trans. Graph. 34, 4, Article 135 (July 2015), 12 pages.
[32]
U. T. Ringertz. 1993. On finding the optimal distribution of material properties. Struct. Multidiscipl. Optimiz. 5, 4 (1993), 265--267.
[33]
Daniel Ritchie, Ben Mildenhall, Noah D. Goodman, and Pat Hanrahan. 2015. Controlling procedural modeling programs with stochastically-ordered sequential monte carlo. ACM Trans. Graph. 34, 4 (2015), 105:1--105:11.
[34]
H. Rodrigues, Jose M. Guedes, and M. P. Bendsøe. 2002. Hierarchical optimization of material and structure. Struct. Multidiscipl. Optimiz. 24, 1 (2002), 1--10.
[35]
Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to control elasticity in 3D printing. ACM Trans. Graph. 34, 4 (2015), 136.
[36]
Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses.
[37]
Ole Sigmund. 1997. On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 4 (1997), 493--524.
[38]
Ole Sigmund. 2007. Morphology-based black and white filters for topology optimization. Struct. Multidiscipl. Optimiz. 33 (2007), 401--424.
[39]
Ole Sigmund and Kurt Maute. 2013. Topology optimization approaches. Struct. Multidiscipl. Optimiz. 48, 6 (2013), 1031--1055.
[40]
Ole Sigmund and Salvatore Torquato. 1996. Composites with extremal thermal expansion coefficients. Appl. Phys. Lett. 69, 21 (1996), 3203--3205.
[41]
Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus Gross. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4 (2013), 82:1--82:10.
[42]
Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Měch. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM Trans. Graph. 31, 4 (2012), 48:1--48:11.
[43]
Krister Svanberg. 1987. The method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 2 (1987), 359--373.
[44]
T. C. T. Ting and Tungyang Chen. 2005. Poisson’s ratio for anisotropic elastic materials can have no bounds. Quart. J. Mech. Appl. Math. 58, 1 (2005), 73--82.
[45]
Kiril Vidimče, Szu-Po Wang, Jonathan Ragan-Kelley, and Wojciech Matusik. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. Graph. 32, 4 (2013), 136:1--136:12.
[46]
A. Wächter and L. T. Biegler. 2006. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 1 (2006), 25--57.
[47]
F. Wang, O. Sigmund, and J. S. Jensen. 2014. Design of materials with prescribed nonlinear properties. J. Mech. Phys. Solids 69 (2014), 156--174.
[48]
Jun Wu, Christian Dick, and Rüdiger Westermann. 2016. A system for high-resolution topology optimization. IEEE Trans. Vis. Comput. Graph. 22, 3 (2016), 1195--1208.
[49]
Liang Xia and Piotr Breitkopf. 2014. Concurrent topology optimization design of material and structure within nonlinear multiscale analysis framework. Comput. Methods Appl. Mech. Eng. 278 (2014), 524--542.
[50]
Liang Xia and Piotr Breitkopf. 2015a. Design of materials using topology optimization and energy-based homogenization approach in matlab. Struct. Multidiscipl. Optimiz. 52, 6 (2015), 1229--1241.
[51]
Liang Xia and Piotr Breitkopf. 2015b. Multiscale structural topology optimization with an approximate constitutive model for local material microstructure. Comput. Methods Appl. Mech. Eng. 286 (2015), 147--167.
[52]
Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbivč. 2015. Interactive material design using model reduction. ACM Trans. Graph. 34, 2 (2015), 18:1--18:14.
[53]
Xiaolei Yan, Xiaodong Huang, Guangyong Sun, and Yi Min Xie. 2015. Two-scale optimal design of structures with thermal insulation materials. Comp. Struct. 120 (2015), 358--365.
[54]
X. Yan, X. Huang, Y. Zha, and Y. M. Xie. 2014. Concurrent topology optimization of structures and their composite microstructures. Comput. Struct. 133 (2014), 103--110.
[55]
Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural analysis. ACM Trans. Graph. 32, 4 (2013), 137:1--137:12.
[56]
Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (2005), 965--972.

Cited By

View all

Index Terms

  1. Two-Scale Topology Optimization with Microstructures

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 36, Issue 5
    October 2017
    161 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3127587
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 25 July 2017
    Accepted: 01 April 2017
    Revised: 01 March 2017
    Received: 01 November 2016
    Published in TOG Volume 36, Issue 5

    Permissions

    Request permissions for this article.

    Check for updates

    Badges

    Author Tags

    1. 3D printing
    2. Microstructures
    3. metamaterials
    4. topology optimization

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Defense Advanced Research Projects Agency (DARPA)
    • Space and Naval Warfare Systems Center Pacific (SSC Pacific)

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)63
    • Downloads (Last 6 weeks)17
    Reflects downloads up to 01 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media