skip to main content
10.1145/2994374.2994400acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmobiquitousConference Proceedingsconference-collections
research-article

Supervised and Unsupervised Transfer Learning for Activity Recognition from Simple In-home Sensors

Published: 28 November 2016 Publication History
First page of PDF

References

[1]
N. Alshurafa, W. Xu, J. J. Liu, M.-C. Huang, B. Mortazavi, C. K. Roberts, and M. Sarrafzadeh. Designing a robust activity recognition framework for health and exergaming using wearable sensors. Biomedical and Health Informatics, IEEE Journal of, 18(5):1636--1646, 2014.
[2]
G. Bajrami. Activity Identification for Gait Recognition Using Mobile Devices. 2011.
[3]
L. Bao and S. S. Intille. Activity Recognition from User-Annotated Acceleration Data. 2004.
[4]
U. Blanke and B. Schiele. Remember and transfer what you have learned-recognizing composite activities based on activity spotting. In Wearable Computers (ISWC), 2010 International Symposium on, pages 1--8. IEEE, 2010.
[5]
G. Cohn, S. Gupta, J. Froehlich, E. Larson, and S. N. Patel. GasSense: Appliance-level, single-point sensing of gas activity in the home. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6030 LNCS:265--282, 2010.
[6]
T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27:861--874, 2006.
[7]
S. Gupta, M. S. Reynolds, and S. N. Patel. ElectriSense: single-point sensing using EMI for electrical event detection and classification in the home. In Proceedings of the 12th ACM international conference on Ubiquitous computing, pages 139--148, 2010.
[8]
S. Inoue. Mobile Activity Recognition for a Whole Day: Recognizing Real Nursing Activities with Big Dataset Kyushu Institute of Technology Naonori UEDA Laboratories Kyushu University Hospital Then, we propose a method for recognizing wholeday activ-. pages 1269--1280, 2015.
[9]
N. Inoue, Sozo and Ueda, Naonori and Nohara, Yasunobu and Nakashima. Mobile Activity Recognition for a Whole Day: Recognizing Real Nursing Activities with Big Dataset. In ACM Int'l Conf. Pervasive and Ubiquitous Computing (Ubicomp), pages 1269--1280, Osaka, 2015. ACM.
[10]
T. Kamishima, M. Hamasaki, and S. Akaho. TrBagg: A simple transfer learning method and its application to personalization in collaborative tagging. Proceedings - IEEE International Conference on Data Mining, ICDM, pages 219--228, 2009.
[11]
T. V. Kasteren, A. Noulas, G. Englebienne, B. Kr, T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse. Accurate Activity Recognition in a Home Setting. In UbiComp '08 Proceedings of the 10th international conference on Ubiquitous computing, pages 1--9, 2008.
[12]
A. Khan, S. Mellor, E. Berlin, R. Thompson, R. Mcnaney, P. Olivier, and T. Pl. Beyond Activity Recognition: Skill Assessment from Accelerometer Data. 2015.
[13]
C. Ladha, N. Y. Hammerla, P. Olivier, and T. Plötz. ClimbAX: skill assessment for climbing enthusiasts. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pages 235--244. ACM, 2013.
[14]
D. Lin, X. An, and J. Zhang. Double-bootstrapping source data selection for instance-based transfer learning. Pattern Recognition Letters, 34(11):1279--1285, 2013.
[15]
B. Longstaff, S. Reddy, and D. Estrin. Improving activity classification for health applications on mobile devices using active and semi-supervised learning. In Proceedings of the 4th International ICST Conference on Pervasive Computing Technologies for Healthcare, pages 1--7, 2010.
[16]
M. Luštrek, H. Gjoreski, S. Kozina, B. Cvetkoviü, V. Mirchevska, and M. Gams. Detecting Falls with Location Sensors and Accelerometers. In Twenty-Third IAAI Conference, pages 1662--1667, 2011.
[17]
S. Mazilu and G. Tröster. Wearable technologies: One step closer to gait rehabilitation in Parkinson's patients. XRDS: Crossroads, The ACM Magazine for Students, 21(2):48--53, 2014.
[18]
P. Mostarac, R. Malaric, M. Jurcevic, H. Hegedus, A. Lay-Ekuakille, and P. Vergallo. System for monitoring and fall detection of patients using mobile 3-axis accelerometers sensors. In MeMeA 2011 - 2011 IEEE International Symposium on Medical Measurements and Applications, Proceedings, 2011.
[19]
F. Naya, R. Ohmura, F. Takayanagi, H. Noma, and K. Kogure. Workers' Routine Activity Recognition using Body Movements and Location Information. 2006 10th IEEE International Symposium on Wearable Computers, pages 105--108, 2006.
[20]
L. N. N. Nguyen, D. Rodríguez-Martín, A. Català, C. Pérez-López, A. Samà, and A. Cavallaro. Basketball Activity Recognition using Wearable Inertial Measurement Units. In Proceedings of the XVI International Conference on Human Computer Interaction, page 60. ACM, 2015.
[21]
S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345--1359, oct 2010.
[22]
X. Pan, T. Minezaki, T. Isoda, S. Tanaka, Y. Uchino, and S. Inoue. Analyzing Daily-life Activities and Power Consumptions Using Tablet Sensors and Activity Annotation Web System. In Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, UbiComp/ISWC'15 Adjunct, pages 1443--1452, New York, NY, USA, 2015. ACM.
[23]
A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey, T. Sonne, and M. M. Jensen. Smart Devices are Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity Recognition. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems, pages 127--140. ACM, 2015.
[24]
C. Strohrmann, H. Harms, and G. Tröster. What do sensors know about your running performance? In Proceedings - International Symposium on Wearable Computers, ISWC, pages 101--104, 2011.
[25]
M. Sugiyama, M. Krauledat, and K.-R. Müller. Covariate Shift Adaptation by Importance Weighted Cross Validation. J. Mach. Learn. Res., 8:985--1005, 2007.
[26]
E. M. Tapia, S. S. Intille, and K. Larson. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. Pervasive Computing, 3001:158--175, 2004.
[27]
T. L. M. Van Kasteren, G. Englebienne, and B. J. A. Kröse. Transferring knowledge of activity recognition across sensor networks. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 6030 LNCS, pages 283--300, 2010.
[28]
T. T. Vu, A. Sokan, H. Nakajo, K. Fujinami, J. Suutala, P. Siirtola, T. Alasalmi, A. Pitk\"anen, and J. Roning. Detecting water waste activities for water-efficient living. In 13th International Conference on Ubiquitous Computing, {{}UbiComp'11{}} and the Co-located Workshops, pages 579--580, 2011.
[29]
J. A. Ward, P. Lukowicz, G. Tröster, and T. E. Starner. Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:1553--1566, 2006.
[30]
W. Y. Wong, M. S. Wong, and K. H. Lo. Clinical applications of sensors for human posture and movement analysis: a review. Prosthetics and orthotics international, 31:62--75, 2007.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
MOBIQUITOUS 2016: Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
November 2016
307 pages
ISBN:9781450347501
DOI:10.1145/2994374
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 November 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Device-free activity recognition
  2. home sensor dataset
  3. transfer learning

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

MOBIQUITOUS 2016
MOBIQUITOUS 2016: Computing, Networking and Services
November 28 - December 1, 2016
Hiroshima, Japan

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)1
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media