skip to main content
10.1145/2975167.2975212acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

deepTarget: End-to-end Learning Framework for microRNA Target Prediction using Deep Recurrent Neural Networks

Published: 02 October 2016 Publication History

Abstract

MicroRNAs (miRNAs) are short sequences of ribonucleic acids that control the expression of target messenger RNAs (mRNAs) by binding them. Robust prediction of miRNA-mRNA pairs is of utmost importance in deciphering gene regulation but has been challenging because of high false positive rates, despite a deluge of computational tools that normally require laborious manual feature extraction. This paper presents an end-to-end machine learning framework for miRNA target prediction. Leveraged by deep recurrent neural networks-based auto-encoding and sequence-sequence interaction learning, our approach not only delivers an unprecedented level of accuracy but also eliminates the need for manual feature extraction. The performance gap between the proposed method and existing alternatives is substantial (over 25% increase in F-measure), and deepTarget delivers a quantum leap in the longstanding challenge of robust miRNA target prediction. [availability: http://data.snu.ac.kr/pub/deepTarget]

References

[1]
D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.
[2]
P. Baldi and S. Brunak. Chapter 6. neural networks: applications. In Bioinformatics: The Machine Learning Approach. MIT press, 2001.
[3]
S. Bandyopadhyay, D. Ghosh, R. Mitra, and Z. Zhao. MB-STAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Scientific reports, 5, 2015.
[4]
D. P. Bartel. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281--297, 2004.
[5]
S. Cheng, M. Guo, C. Wang, X. Liu, Y. Liu, and X. Wu. MiRTDL: a deep learning approach for miRNA target prediction.
[6]
K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.
[7]
K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
[8]
F. Chollet. Keras: Deep Learning library for Theano and TensorFlow. https://github.com/fchollet/keras, 2015.
[9]
A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander, D. S. Marks, et al. MicroRNA targets in Drosophila. Genome Biology, 5(1):R1--R1, 2004.
[10]
R. A. Fisher, F. Yates, et al. Statistical tables for biological, agricultural and medical research. Statistical tables for biological, agricultural and medical research., (Ed. 3.), 1949.
[11]
R. C. Friedman, K. K.-H. Farh, C. B. Burge, and D. P. Bartel. Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1):92--105, 2009.
[12]
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In International conference on artificial intelligence and statistics, pages 249--256, 2010.
[13]
I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Book in preparation for MIT Press, 2016.
[14]
K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. DRAW: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623, 2015.
[15]
S. Griffiths-Jones, H. K. Saini, S. van Dongen, and A. J. Enright. miRBase: tools for microRNA genomics. Nucleic Acids Research, 36(suppl 1):D154--D158, 2008.
[16]
S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735--1780, 1997.
[17]
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.
[18]
B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, D. S. Marks, et al. Human microRNA targets. PLoS Biol, 2(11):e363, 2004.
[19]
R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network architectures. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 2342--2350, 2015.
[20]
M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal. The role of site accessibility in microRNA target recognition. Nature Genetics, 39(10):1278--1284, 2007.
[21]
D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[22]
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114, 2013.
[23]
Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.
[24]
B. Lee, T. Lee, B. Na, and S. Yoon. DNA-level splice junction prediction using deep recurrent neural networks. arXiv preprint arXiv:1512.05135, 2015.
[25]
T. Lee and S. Yoon. Boosted categorical restricted boltzmann machine for computational prediction of splice junctions. In ICML, pages 2483--2492, 2015.
[26]
B. P. Lewis, I.-h. Shih, M. W. Jones-Rhoades, D. P. Bartel, and C. B. Burge. Prediction of mammalian microRNA targets. Cell, 115(7):787--798, 2003.
[27]
J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, et al. MicroRNA expression profiles classify human cancers. nature, 435(7043):834--838, 2005.
[28]
T. M Witkos, E. Koscianska, and W. J Krzyzosiak. Practical aspects of microRNA target prediction. Current molecular medicine, 11(2):93--109, 2011.
[29]
M. Maragkakis, P. Alexiou, G. L. Papadopoulos, M. Reczko, T. Dalamagas, G. Giannopoulos, G. Goumas, E. Koukis, K. Kourtis, V. A. Simossis, et al. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics, 10(1):295, 2009.
[30]
P. Maziere and A. J. Enright. Prediction of microRNA targets. Drug discovery today, 12(11):452--458, 2007.
[31]
M. Menor, T. Ching, X. Zhu, D. Garmire, and L. X. Garmire. mirMark: a site-level and UTR-level classifier for miRNA target prediction. Genome biology, 15(10):500, 2014.
[32]
H. Min and S. Yoon. Got target?: Computational methods for microRNA target prediction and their extension. Experimental & Molecular Medicine, 42(4):233--244, 2010.
[33]
S. Min, B. Lee, and S. Yoon. Deep learning in bioinformatics. Briefings in Bioinformatics, in press, 2016.
[34]
K. C. Miranda, T. Huynh, Y. Tay, Y.-S. Ang, W.-L. Tam, A. M. Thomson, B. Lim, and I. Rigoutsos. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell, 126(6):1203--1217, 2006.
[35]
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11), pages 689--696, 2011.
[36]
R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep recurrent neural networks. arXiv preprint arXiv:1312.6026, 2013.
[37]
S. M. Peterson, J. A. Thompson, M. L. Ufkin, P. Sathya-narayana, L. Liaw, and C. B. Congdon. Common features of microRNA target prediction tools. Front Genet, 5:23, 2014.
[38]
T. Saito and M. Rehmsmeier. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PloS One, 10(3):e0118432, 2015.
[39]
H. Sak, A. Senior, and F. Beaufays. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the Annual Conference of International Speech Communication Association (INTERSPEECH), 2014.
[40]
M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. Signal Processing, IEEE Transactions on, 45(11):2673--2681, 1997.
[41]
A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje. Not just a black box: Learning important features through propagating activation differences. arXiv preprint arXiv:1605.01713, 2016.
[42]
K. Sohn, W. Shang, and H. Lee. Improved multimodal deep learning with variation of information. In Advances in Neural Information Processing Systems, pages 2141--2149, 2014.
[43]
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929--1958, 2014.
[44]
N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video representations using LSTMs. arXiv preprint arXiv:1502.04681, 2015.
[45]
P. K. Srivastava, T. R. Moturu, P. Pandey, I. T. Baldwin, and S. P. Pandey. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics, 15(1):1, 2014.
[46]
M. Sturm, M. Hackenberg, D. Langenberger, and D. Frishman. TargetSpy: a supervised machine learning approach for microRNA target prediction. BMC Bioinformatics, 11(1):292, 2010.
[47]
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning, pages 1096--1103. ACM, 2008.
[48]
O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. arXiv preprint arXiv:1411.4555, 2014.
[49]
F. Xiao, Z. Zuo, G. Cai, S. Kang, X. Gao, and T. Li. miRecords: an integrated resource for microRNA--target interactions. Nucleic Acids Research, 37(suppl 1):D105--D110, 2009.
[50]
S. Yoon and G. De Micheli. Computational identification of microRNAs and their targets. Birth Defects Research Part C: Embryo Today: Reviews, 78(2):118--128, 2006.

Cited By

View all

Index Terms

  1. deepTarget: End-to-end Learning Framework for microRNA Target Prediction using Deep Recurrent Neural Networks

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      BCB '16: Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
      October 2016
      675 pages
      ISBN:9781450342254
      DOI:10.1145/2975167
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 02 October 2016

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. LSTM
      2. deep learning
      3. microRNA
      4. recurrent neural networks

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      BCB '16
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 254 of 885 submissions, 29%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)64
      • Downloads (Last 6 weeks)11
      Reflects downloads up to 20 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media