skip to main content
10.1145/2930889.2930919acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

On the Bit Complexity of Solving Bilinear Polynomial Systems

Published: 20 July 2016 Publication History

Abstract

We bound the Boolean complexity of computing isolating hyperboxes for all complex roots of systems of bilinear polynomials. The resultant of such systems admits a family of determinantal Sylvester-type formulas, which we make explicit by means of homological complexes. The computation of the determinant of the resultant matrix is a bottleneck for the overall complexity. We exploit the quasi-Toeplitz structure to reduce the problem to efficient matrix-vector products, corresponding to multivariate polynomial multiplication. For zero-dimensional systems, we arrive at a primitive element and a rational univariate representation of the roots. The overall bit complexity of our probabilistic algorithm is OB(n4 D4 + n2D4 τ), where n is the number of variables, D equals the bilinear Bezout bound, and τ is the maximum coefficient bitsize. Finally, a careful infinitesimal symbolic perturbation of the system allows us to treat degenerate and positive dimensional systems, thus making our algorithms and complexity analysis applicable to the general case.

References

[1]
C. J. Accettella, G. M. D. Corso, and G. Manzini. Inversion of two level circulant matrices over Z_p. Lin. Alg. Appl., 366: 5 -- 23, 2003.
[2]
M. E. Alonso, E. Becker, M.-F. Roy, and T. Wörmann. Algorithms in algebraic geometry and applications. chapter Zeros, Multiplicities, and Idempotents for Zero-dimensional Systems, pages 1--15. 1996.
[3]
A. Arnold and D. S. Roche. Output-sensitive algorithms for sumset and sparse polynomial multiplication. In Proc. ACM ISSAC, pages 29--36, 2015.
[4]
Bostan, Lecerf, and Schost}BoLeSc-Tellegen-03A. Bostan, G. Lecerf, and E. Schost. Tellegen's principle into practice. In Proc. ISSAC, pages 37--44, 2003. ISBN 1--58113--641--2.
[5]
Bostan, Salvy, and Schost}BoSaSc-dual-03A. Bostan, B. Salvy, and É. Schost. Fast algorithms for zero-dimensional polynomial systems using duality. Applicable Algebra in Engineering, Communication and Computing, 14 (4): 239--272, 2003.
[6]
Y. Bouzidi, S. Lazard, G. Moroz, M. Pouget, F. Rouillier, and M. Sagraloff. Improved algorithms for solving bivariate systems via Rational Univariate Representations. Tech. report, Inria, June 2015.
[7]
J. Canny. Some algebraic and geometric computations in PSPACE. In Proc. 20th STOC, pages 460--467. ACM, 1988.
[8]
J. Canny. Generalised characteristic polynomials. JSC, 9 (3): 241--250, 1990.
[9]
J. F. Canny, E. Kaltofen, and L. Yagati. Solving systems of nonlinear polynomial equations faster. In Proc. ISSAC, pages 121--128, 1989.
[10]
D. Cox and E. Materov. Tate resolutions for Segre embeddings. Algebra & Number Theory, 2 (5): 523--550, 2008.
[11]
X. Dahan and E. Schost. Sharp estimates for triangular sets. In Proc. ACM ISSAC, pages 103--110, 2004. ISBN 1--58113--827-X.
[12]
C. D'Andrea and A. Dickenstein. Explicit formulas for the multivariate resultant. J. Pure and Applied Algebra, 164 (1--2): 59--86, 2001.
[13]
C. D'Andrea and I. Emiris. Computing sparse projection operators. Contemporary Mathematics, 286: 121--140, 2001.
[14]
A. Dickenstein and I. Z. Emiris. Multihomogeneous resultant formulae by means of complexes. JSC, 36 (3): 317--342, 2003.
[15]
I. Emiris and R. Vidunas. Root counts of semi-mixed systems, and an application to counting Nash equilibria. In Proc. ACM ISSAC, pages 154--161, Kobe, Japan, 2014. ACM Press.
[16]
I. Z. Emiris and A. Mantzaflaris. Multihomogeneous resultant formulae for systems with scaled support. JSC, 47 (7): 820--842, 2012.
[17]
I. Z. Emiris and V. Y. Pan. Symbolic and Numeric Methods for Exploiting Structure in Constructing Resultant Matrices. JSC, 33 (4): 393--413, Apr. 2002.
[18]
I. Z. Emiris and V. Y. Pan. Improved algorithms for computing determinants and resultants. J. of Complexity, 21 (1): 43--71, Feb. 2005.
[19]
I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. The DMM bound: Multivariate (aggregate) separation bounds. In Proc. ACM ISSAC, pages 243--250, 2010.
[20]
I. Z. Emiris, B. Mourrain, and E. Tsigaridas. Separation bounds for polynomial systems. Technical report, INRIA, Dec. 2015.
[21]
J.-C. Faugere, F. Levy-Dit-Vehel, and L. Perret. Cryptanalysis of minrank. In Advances in Cryptology, pages 280--296. Springer, 2008.
[22]
J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms and complexity. JSC, 46: 406--437, 2011.
[23]
I. Gelfand, M. Kapranov, and A. Zelevinsky. Discriminants, Resultants and Multidimensional Determinants. Birkhauser, Boston, 1994.
[24]
M. Giusti and J. Heintz. La détermination des points isolés et de la dimension d'une variété algébrique peut se faire en temps polynomial. In Proc. Int. Meeting on Commutative Algebra, Cortona, 1993.
[25]
M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial system solving. J. of Complexity, 17 (1): 154--211, 2001.
[26]
R. Hartshorne. Algebraic Geometry. Springer, New York, 1977.
[27]
N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics, Philadelphia, 2002.
[28]
J. v. d. Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial multiplication. JSC, 50: 227--254, 2013.
[29]
G. Jeronimo and J. Sabia. Computing multihomogeneous resultants using straight-line programs. JSC, 42 (1--2): 218--235, 2007.
[30]
A. Joux. A new index calculus algorithm with complexity L(1/4+o(1)) in small characteristic. In Selected Areas in Cryptography--SAC 2013, pages 355--379. Springer, 2014.
[31]
E. Kaltofen and G. Villard. On the complexity of computing determinants. Computational Complexity, 13 (3--4): 91--130, 2005.
[32]
A. Mantzaflaris and B. Mourrain. Deflation and certified isolation of singular zeros of polynomial systems. In Proc. ACM ISSAC, pages 249--256, 2011.
[33]
A. Mantzaflaris and B. Mourrain. Singular zeros of polynomial systems. In T. Dokken and G. Muntingh, editors, Advances in Shapes, Geometry, and Algebra, volume 10 of phGeometry and Computing, pages 77--103. Springer, 2014.
[34]
N. McCoy. On the resultant of a system of forms homogeneous in each of several sets of variables. Trans. AMS, 35 (1): 215--233, 1933.
[35]
E. Mehrabi and E. Schost. A softly optimal monte carlo algorithm for solving bivariate polynomial systems over the integers. J. of Complexity, 34: 78 -- 128, 2016.
[36]
T. Muir. The resultant of a set of lineo-linear equations. Proc. Royal Soc. of South Africa, 2 (1): 373--380, 1910.
[37]
A. V. Ourivski and T. Johansson. New technique for decoding codes in the rank metric and its cryptography applications. Problems of Information Transmission, 38 (3): 237--246, 2002.
[38]
V. Y. Pan. Univariate polynomials: Nearly optimal algorithms for numerical factorization and root-finding. JSC, 33 (5): 701 -- 733, 2002.
[39]
V. Y. Pan and E. Tsigaridas. Accelerated Approximation of the Complex Roots and Factors of a Univariate Polynomial. Theoretical Computer Science, 2015. (To appear).
[40]
V. Y. Pan and E. Tsigaridas. Nearly optimal computations with structured matrices. Theoretical Computer Science, 2015. (To appear).
[41]
F. Rouillier. Solving zero-dimensional systems through the rational univariate representation. Applicable Algebra in Engineering, Communication and Computing, 9 (5): 433--461, 1999.
[42]
M. Safey El Din and É. Schost. Polar varieties and computation of one point in each connected component of a smooth real algebraic set. In Proc. ACM ISSAC, pages 224--231, 2003.
[43]
H. Schenck, D. Cox, and A. Dickenstein. A case study in bigraded commutative algebra. Syzygies & Hilbert Functions, 254: 67--112, 2007.
[44]
P.-J. Spaenlehauer. Solving multi-homogeneous and determinantal systems: algorithms, complexity, applications. Thesis, Université Pierre et Marie Curie (Univ. Paris 6), Oct. 2012.
[45]
B. Sturmfels and A. Zelevinsky. Multigraded resultants of Sylvester type. J. Algebra, 163 (1): 115--127, 1994.
[46]
J. Sylvester. On the degree and weight of the resultant of a multipartite system of equations. Proc. Royal Soc. of London, 12: 674--676, 1862.
[47]
J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 3rd edition, 2013.
[48]
J. Weyman. Calculating discriminants by higher direct images. Trans. of AMS, 343 (1): 367--389, 1994.
[49]
J. Weyman. Cohomology of Vector Bundles and Syzygies. Cambridge Univ. Press, 2003. {Cambridge Tracts in Mathematics 149}.
[50]
J. Weyman and A. Zelevinsky. Determinantal formulas for multigraded resultants. J. Alg. Geom., 3 (4): 569--597, 1994.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '16: Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation
July 2016
434 pages
ISBN:9781450343800
DOI:10.1145/2930889
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 July 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. DMM
  2. bilinear polynomial
  3. polynomial system solving
  4. resultant matrix
  5. separation bounds

Qualifiers

  • Research-article

Conference

ISSAC '16
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media