skip to main content
10.1145/2909824.3020227acmconferencesArticle/Chapter ViewAbstractPublication PageshriConference Proceedingsconference-collections
research-article
Open access

Simplified Programming of Re-usable Skills on a Safe Industrial Robot: Prototype and Evaluation

Published: 06 March 2017 Publication History

Abstract

This paper presents a study on iconic programming support for mainly position-based lead-through programming of an ABB YuMi collaborative robot. A prototype tool supporting a hybrid programming and execution mode was developed and evaluated with 21 non-expert users with varying programming and robotics experience. We also present a comparison of the programming times for an expert robot programmer using traditional tools versus the new tool. The expert programmed the same tasks in 1/5 of the time compared to traditional tools and the non-experts were able to program and debug a LEGO building task using the robot within 30 minutes.

References

[1]
H2020 sarafun - smart assembly robots with advanced functionalities - grant agreement no 644938. http://h2020sarafun.eu/. Accessed: 2016--10-03.
[2]
Robotic assembly of emergency stop buttons - youtube video. https://youtu.be/7JgdbFW5mEg. Accessed: 2016--10-03.
[3]
YuMi wraps Christmas gifts - youtube video. https://youtu.be/ASEtz2M1RiY. Accessed: 2016--10-03.
[4]
F. J. Abu-Dakka, B. Nemec, A. Kramberger, A. G. Buch, N. Krüger, and A. Ude. Solving peg-in-hole tasks by human demonstration and exception strategies. Industrial Robot: An International Journal, 41(6):575--584, 2014.
[5]
S. Ahmadzadeh, A. Paikan, F. Mastrogiovanni, L. Natale, P. Kormushev, and D. Caldwell. Learning symbolic representations of actions from human demonstrations. pages 3801--3808. IEEE, 2015.
[6]
S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama. Robot programming by demonstration with interactive action visualizations. In Proceedings of Robotics: Science and Systems, Berkeley, USA, July 2014.
[7]
A. Billard, S. Calinon, and R. Dillmann. Learning from humans. In Springer Handbook of Robotics, Chapter 74, pages 1995--2014. Springer, 2016.
[8]
M. Cakmak and A. L. Thomaz. Designing robot learners that ask good questions. In Human-Robot Interaction (HRI), 2012 7th ACM/IEEE International Conference on, pages 17--24, March 2012.
[9]
J. Felip, J. Laaksonen, A. Morales, and V. Kyrki. Manipulation primitives: A paradigm for abstraction and execution of grasping and manipulation tasks. Robot. Auton. Syst., 61(3):283--296, Mar. 2013.
[10]
A. Feniello, H. Dang, and S. Birchfield. Program synthesis by examples for object repositioning tasks. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4428--4435, Sept 2014.
[11]
B. Fonooni, T. Hellström, and L.-E. Janlert. Priming as a means to reduce ambiguity in learning from demonstration. International Journal of Social Robotics, 8(1):5--19, 2016.
[12]
D. F. Glas, T. Kanda, and H. Ishiguro. Human-robot interaction design using interaction composer: Eight years of lessons learned. In The Eleventh ACM/IEEE International Conference on Human Robot Interaction, HRI '16, pages 303--310, Piscataway, NJ, USA, 2016. IEEE Press.
[13]
B. Huang, M. Li, R. L. Souza, J. J. Bryson, and A. Billard. A modular approach to learning manipulation strategies from human demonstration. Auton. Robots, 40(5):903--927, June 2016.
[14]
J. Huang, T. Lau, and M. Cakmak. Design and evaluation of a rapid programming system for service robots. In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 295--302, March 2016.
[15]
A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor primitives. Technical report, 2002.
[16]
W. K. H. Ko, Y. Wu, K. P. Tee, and J. Buchli. Towards industrial robot learning from demonstration. In Proceedings of the 3rd International Conference on Human-Agent Interaction, pages 235--238. ACM, 2015.
[17]
J. Kober, M. Gienger, and J. J. Steil. Learning movement primitives for force interaction tasks. In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages 3192--3199. IEEE, 2015.
[18]
P. Kormushev, S. Calinon, and D. G. Caldwell. Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Advanced Robotics, 25(5):581--603, 2011.
[19]
A. Kramberger, R. Piltaver, B. Nemec, M. Gams, and A. Ude. Learning of assembly constraints by demonstration and active exploration. Industrial Robot: An International Journal, 43(5):524--534, 2016.
[20]
A. Kurenkov, B. Akgun, and A. L. Thomaz. An evaluation of gui and kinesthetic teaching methods for constrained-keyframe skills. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3608--3613, Sept 2015.
[21]
S. Manschitz, J. Kober, M. Gienger, and J. Peters. Learning to sequence movement primitives from demonstrations. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4414--4421, Sept 2014.
[22]
D. Massa, M. Callegari, and C. Cristalli. Manual guidance for industrial robot programming. Industrial Robot: An International Journal, 42(5):457--465, 2015.
[23]
A. Mohseni-Kabir, C. Rich, S. Chernova, C. L. Sidner, and D. Miller. Interactive hierarchical task learning from a single demonstration. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI '15, pages 205--212, New York, NY, USA, 2015. ACM.
[24]
B. Nemec, R. Vuga, and A. Ude. Efficient sensorimotor learning from multiple demonstrations. Advanced Robotics, 27(13):1023--1031, 2013.
[25]
S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and A. G. Barto. Learning grounded finite-state representations from unstructured demonstrations. The International Journal of Robotics Research, 34(2):131--157, 2015.
[26]
M. Pardowitz, S. Knoop, R. Dillmann, and R. D. Zöllner. Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 37(2):322--332, April 2007.
[27]
P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. Skill learning and task outcome prediction for manipulation. In 2011 IEEE International Conference on Robotics and Automation, pages 3828--3834, May 2011.
[28]
M. R. Pedersen, D. L. Herzog, and V. Krüger. Intuitive skill-level programming of industrial handling tasks on a mobile manipulator. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4523--4530, Sept 2014.
[29]
M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger, and O. Madsen. Robot skills for manufacturing: From concept to industrial deployment. Robotics and Computer-Integrated Manufacturing, 37:282 -- 291, 2016.
[30]
A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll. Intuitive instruction of industrial robots: Semantic process descriptions for small lot production. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, October 2016. https://youtu.be/bbInEMEF5zU.
[31]
G. B. Rodamilans, E. Villani, L. G. Trabasso, W. R. d. Oliveira, and R. Suterio. A comparison of industrial robots interface: force guidance system and teach pendant operation. Industrial Robot: An International Journal, 43(5):552--562, 2016.
[32]
M. Stenmark, J. Malec, and A. Stolt. From high-level task descriptions to executable robot code. In Intelligent Systems' 2014, pages 189--202. Springer, 2014.
[33]
M. Stenmark and P. Nugues. Natural language programming of industrial robots. In Robotics (ISR), 2013 44th International Symposium on, pages 1--5. IEEE, 2013.
[34]
M. Stenmark, A. Stolt, E. A. Topp, M. Haage, A. Robertsson, K. Nilsson, and R. Johansson. The GiftWrapper: Programming a Dual-Arm Robot With Lead-through. In ICRA Workshop on Human-Robot Interfaces for Enhanced Physical Interactions, 2016.
[35]
M. Stenmark and E. A. Topp. From demonstrations to skills for high-level programming of industrial robots. In AAAI Fall Symposium Series 2016, Symposium on AI for HRI, 2016.
[36]
A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson. Force controlled assembly of emergency stop button. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 3751--3756. IEEE, 2011.
[37]
A. Stolt, M. Stenmark, A. Robertsson, and K. Nilsson. Robotic gift wrapping or a glance at the present state in santa's workshop. In Reglermote 2016 (Swedish meeting on automatic control 2016), 2016.
[38]
P. Tsarouchi, S. Makris, and G. Chryssolouris. Human--robot interaction review and challenges on task planning and programming. Int. J. Comput. Integr. Manuf., 29(8):916--931, Aug. 2016.
[39]
M. Tykal, A. Montebelli, and V. Kyrki. Incrementally assisted kinesthetic teaching for programming by demonstration. In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 205--212, March 2016.
[40]
S. Wrede, C. Emmerich, R. Grünberg, A. Nordmann, A. Swadzba, and J. Steil. A user study on kinesthetic teaching of redundant robots in task and configuration space. Journal of Human-Robot Interaction, 2(1):56 -- 81, 2013.

Cited By

View all

Index Terms

  1. Simplified Programming of Re-usable Skills on a Safe Industrial Robot: Prototype and Evaluation

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        HRI '17: Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction
        March 2017
        510 pages
        ISBN:9781450343367
        DOI:10.1145/2909824
        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 06 March 2017

        Check for updates

        Author Tags

        1. intuitive programming of industrial robots
        2. kinesthetic teaching
        3. user study

        Qualifiers

        • Research-article

        Funding Sources

        • The European Community's Framework Programme Horizon 2020

        Conference

        HRI '17
        Sponsor:

        Acceptance Rates

        HRI '17 Paper Acceptance Rate 51 of 211 submissions, 24%;
        Overall Acceptance Rate 268 of 1,124 submissions, 24%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)120
        • Downloads (Last 6 weeks)9
        Reflects downloads up to 01 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media