skip to main content
research-article

Connectivity-Based Space Filling Curve Construction Algorithms in High Genus 3D Surface WSNs

Published: 12 August 2016 Publication History

Abstract

Many applications in wireless sensor networks (WSNs) require that sensor observations in a given monitoring area are aggregated in a serial fashion. This demands a routing path to be constructed traversing all sensors in that area, which is also needed to linearize the network. In this article, we present SURF, a <u>S</u>pace filling c<u>UR</u>ve construction scheme for high genus three-dimensional (3D) sur<u>F</u>ace WSNs, yielding a traversal path provably aperiodic (that is, any node is covered at most a constant number of times). SURF first utilizes the hop-count distance function to construct the iso-contour in discrete settings, and then it uses the concept of the Reeb graph and the maximum cut set to divide the network into different regions. Finally, it conducts a novel serial traversal scheme, enabling the traversal within and between regions. To the best of our knowledge, SURF is the first high genus 3D surface WSN targeted and pure connectivity-based solution for linearizing the networks. It is fully distributed and highly scalable, requiring a nearly constant storage and communication cost per node in the network. To incorporate adaptive density of the constructed space filling curve, we also design a second algorithm, called SURF+, which makes use of parameterized spiral-like curves to cover the 3D surface and thus can yield a multiresolution SFC adapting to different requirements on travel budget or fusion delay. The application combining both algorithms for in-network data storage and retrieval in high genus 3D surface WSNs is also presented. Extensive simulations on several representative networks demonstrate that both algorithms work well on high genus 3D surface WSNs.

References

[1]
M. R. Akhondi, A. Talevski, S. Carlsen, and S. Petersen. 2010. Applications of wireless sensor networks in the oil, gas and resources industries. In Proceedings of IEEE AINA. 941--948.
[2]
J. M. Bahi, A. Makhoul, and A. Mostefaoui. 2008. Hilbert mobile beacon for localisation and coverage in sensor networks. Int. J. Syst. Sci. 39, 11 (2008), 1081--1094.
[3]
X. Ban, M. Goswami, W. Zeng, X. Gu, and J. Gao. 2013. Topology dependent space filling curves for sensor networks and applications. In Proceedings of IEEE INFOCOM. 2166--2174.
[4]
Suman Banerjee and Archan Misra. 2002. Minimum energy paths for reliable communication in multi-hop wireless networks. In Proceedings of ACM MobiHoc. 146--156.
[5]
H. Carr, J. Snoeyink, and M. van de Panne. 2004. Simplifying flexible isosurfaces using local geometric measures. In Proceedings of IEEE VIS. 497--504.
[6]
Y.-C. Chung, I. Su, and C. Lee. 2011. An efficient mechanism for processing similarity search queries in sensor networks. Inform. Sci. 181, 2 (2011), 284--307.
[7]
K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. 2003. Loops in reeb graphs of 2-manifolds. In Proceedings of ACM SoCG. 344--350.
[8]
Crossbow. 2003. MICA2 wireless measurement system datasheet.
[9]
J. Erickson and S. Har-Peled. 2004. Optimally cutting a surface into a disk. Discr. Comput. Geom. 31, 1 (2004), 37--59.
[10]
C. Fischer and H. Gellersen. 2010. Location and navigation support for emergency responders: A survey. IEEE Perv. Comput. 9, 1 (2010), 38--47.
[11]
S. Funke and N. Milosavljevic. 2007. Network sketching or: ‘How much geometry hides in connectivity? -- part II’. In Proceedings of ACM-SIAM SODA. 958--967.
[12]
J. Gao and L. Zhang. 2006. Load-balanced short-path routing in wireless networks. IEEE Trans. Parallel Distrib. Syst. 17, 4 (2006), 377--388.
[13]
A. Gray, E. Abbena, and S. Salamon. 2006. Modern Differential Geometry of Curves and Surfaces with Mathematica (3rd ed.). Chapman & Hall/CRC, London.
[14]
A. Hatcher. 2002. Algebraic Topology. Cambridge University Press, Cambridge.
[15]
W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. 2000. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of 33rd HICSS. 4--7.
[16]
Hongbo Jiang, Shudong Jin, and Chonggang Wang. 2011. Prediction or not? an energy-efficient framework for clustering-based data collection in wireless sensor networks. IEEE Trans. Parallel. Distrib. Syst. 22, 6 (2011), 1064--1071.
[17]
H. Jiang, T. Yu, C. Tian, G. Tan, and C. Wang. 2015. Connectivity-based segmentation in large-scale 2-d/3-d sensor networks: Algorithm and applications. IEEE/ACM Trans. Network. 23, 1 (2015), 15--27.
[18]
M. Jin, J. Kim, F. Luo, and X. Gu. 2008. Discrete surface ricci flow. IEEE Trans. Vis. Comput. Graph. 14, 5 (2008), 1030--1043.
[19]
D. B. Johnson and D. A. Maltz. 1996. Dynamic Source Routing in Ad Hoc Wireless Networks. The Kluwer International Series in Engineering and Computer Science, Vol. 353. Kluwer Academic Publishers, Amsterdam, Chapter 5, 153--181.
[20]
B. Karp and H. T. Kung. 2000. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of ACM MobiCom. 243--254.
[21]
D. Koutsonikolas, S. M. Das, and Y. C. Hu. 2007. Path planning of mobile landmarks for localization in wireless sensor networks. Comput. Commun. 30, 13 (2007), 2577--2592.
[22]
F. Kuhn, R. Wattenhofer, and A. Zollinger. 2003. Worst-case optimal and average-case efficient geometric ad-hoc routing. In Proceedings of ACM MobiHoc. 267--278.
[23]
S. S. Lam and Q. Chen. 2013. Geographic routing in d-dimensional spaces with guaranteed delivery and low stretch. IEEE/ACM Trans. Network. 21, 2 (2013), 663--677.
[24]
S. Lederer, Y. Wang, and Jie. Gao. 2009. Connectivity-based localization of large-scale sensor networks with complex shape. ACM Trans. Sens. Network. 5, 4 (2009), 1--32.
[25]
F. Li, J. Luo, S. Xin, W. Wang, and Y. He. 2012. LAACAD: Load balancing k-area coverage through autonomous deployment in wireless sensor networks. In Proceedings of IEEE ICDCS. 566--575.
[26]
F. Li, C. Zhang, J. Luo, S.-Q. Xin, and Y. He. 2014. LBDP: Localized boundary detection and parametrization for 3-D sensor networks. IEEE/ACM Trans. Network. 22, 2 (2014), 567--579.
[27]
M. Li and Y. Liu. 2009. Underground coal mine monitoring with wireless sensor networks. ACM Trans. Sens. Network. 5, 2 (2009), 10:1--10:29.
[28]
W. Liang, P. Schweitzer, and Z. Xu. 2013. Approximation algorithms for capacitated minimum forest problems in wireless sensor networks with a mobile sink. IEEE Trans. Comput. 62, 10 (2013), 1932--1944.
[29]
C.-H. Lin, J.-J. Kuo, B.-H. Liu, and M.-J. Tsai. 2012. GPS-free, boundary-recognition-free, and reliable double-ruling-based information brokerage scheme in wireless sensor networks. IEEE Trans. Comput. 61, 6 (2012), 885--898.
[30]
S. Lin, G. Zhou, M. Al-Hami, K. Whitehouse, Y. Wu, J. A. Stankovic, T. He, X. Wu, and H. Liu. 2015. Toward stable network performance in wireless sensor networks: A multilevel perspective. ACM Trans. Sens. Network. 11, 3 (2015), 42:1--42:26.
[31]
W. Liu, H. Jiang, Y. Yang, X. Liao, H. Lin, and Z. Jin. 2015. A unified framework for line-like skeleton extraction in 2D/3D sensor networks. IEEE Trans. Comput. 64, 5 (2015), 1323--1335.
[32]
Y. Liu, X. Mao, Y. He, K. Liu, W. Gong, and J. Wang. 2013. CitySee: Not only a wireless sensor network. IEEE Network 27, 5 (2013), 42--47.
[33]
J. Luo and Y. He. 2011. GeoQuorum: Load balancing and energy efficient data access in wireless sensor networks. In Proceedings of IEEE INFOCOM. 616--620.
[34]
J. Luo, F. Li, and Y. He. 2011. 3DQS: Distributed data access in 3D wireless sensor networks. In Proceedings of IEEE ICC. 1--5.
[35]
W. S. Massey. 1987. Algebraic Topology: An Introduction. Springer, New York.
[36]
A. Mostefaoui, A. Boukerche, M. A. Merzoug, and M. Melkemi. 2015. A scalable approach for serial aata fusion in wireless sensor networks. Comput. Networks 79 (2015), 103--119.
[37]
J. R. Munkres. 2000. Topology (2nd ed.). Prentice Hall, Upper Saddle River, NJ.
[38]
A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas. 2007. Landmark selection and greedy landmark-descent routing for sensor networks. In Proceedings of IEEE INFOCOM. 661--669.
[39]
V. Pascucci. 2011. Topological Methods in Data Analysis and Visualization. Springer, Berlin.
[40]
S. Patil, S. R. Das, and A. Nasipuri. 2004. Serial data fusion using space-filling curves in wireless sensor networks. In Proceedings of IEEE SECON. 182--190.
[41]
G. Peano. 1890. Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36, 1 (1890), 157--160.
[42]
L. L. Peterson and B. S. Davie. 2011. Computer Networks: A Systems Approach (5th ed.). Morgan Kaufmann.
[43]
G. J. Pottie and W. J. Kaiser. 2000. Wireless integrated network sensors. Commun. ACM 43, 5 (2000), 51--58.
[44]
S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu. 2003. Data-centric storage in sensornets with GHT, a geographic hash table. Mobile Network. Appl. 8, 4 (2003), 427--442.
[45]
S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. 2002. GHT: A geographic hash table for data-centric storage. In Proceedings of ACM International Workshop on Wireless Sensor Networks and Applications. 78--87.
[46]
J. M. Reason and J. M. Rabaey. 2004. A study of energy consumption and reliability in a multi-hop sensor network. ACM SIGMOBILE Mobile Comput. Commun. Rev. 8, 1 (2004), 84--97.
[47]
G. Reeb. 1946. Sur les points singuliers d’une forme de pfaff completement intgrable ou d’une fonction numrique. Compt. Rend. Acad. Sances, Paris 222 (1946), 847--849.
[48]
H. Sagan. 1994. Space-filling Curves. Springer-Verlag, New York.
[49]
R. Sarkar. 2014. Geometric Methods of Information Storage and Retrieval in Sensor Networks. Springer, Berlin, Chapter 14, 465--493.
[50]
R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. 2009. Greedy routing with guaranteed delivery using ricci flows. In Proceedings of ACM/IEEE IPSN. 121--132.
[51]
R. Sarkar, X. Zhu, and J. Gao. 2006. Double rulings for information brokerage in sensor networks. In Proceedings of ACM MobiCom. 286--297.
[52]
R. Sarkar, X. Zhu, and J. Gao. 2009. Double rulings for information brokerage in sensor networks. IEEE/ACM Trans, Network, 17, 6 (2009), 1902--1915.
[53]
R. Sarkar, X. Zhu, and J. Gao. 2013. Distributed and compact routing using spatial distributions in wireless sensor networks. ACM Trans, Sens, Network, 9, 3 (2013), 32:1--20.
[54]
Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and Matt Welsh. 2004. Simulating the power consumption of large-scale sensor network applications. In Proceedings of 2nd ACM SenSys. 188--200.
[55]
F. Spitzer. 2001. Principles of Random Walk. Springer, Berlin.
[56]
R. Sugihara and R. K. Gupta. 2011. Path planning of data mules in sensor networks. ACM Trans. Sens. Network. 8, 1 (2011), 1:1--1:27.
[57]
G. Tan, S. A Jarvis, and A.-M. Kermarrec. 2009. Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks. IEEE Tran. Mobile Comput. 8, 6 (2009), 836--848.
[58]
G. Tan, H. Jiang, J. Liu, and A.-M. Kermarrec. 2014. Convex partitioning of large-scale sensor networks in complex fields: Algorithms and applications. ACM Trans. Sens. Network. 10, 3 (2014), 41:1--41:23.
[59]
G. Tan, H. Jiang, S. Zhang, Z. Yin, and A.-M. Kermarrec. 2013. Connectivity-based and anchor-free localization in large-scale 2D/3D sensor networks. ACM Trans. Sens. Network. 10, 1 (2013), 6:1--6:21.
[60]
Y.-J. Tang, J.-J. Kuo, and M.-J. Tsai. 2014. Double-ruling-based location-free data replication and retrieval scheme in mobile ad hoc networks. In Proceedings of IEEE ICCCN. 1--8.
[61]
A. C. Viana, M. Dias de Amorim, Y. Viniotis, S. Fdida, and J. F. De Rezende. 2006. Twins: A dual addressing space representation for self-organizing networks. IEEE Trans. Parallel Distrib. Syst. 17, 12 (2006), 1468--1481.
[62]
C. Wang and H. Jiang. 2015. SURF: A connectivity-based space filling curve construction algorithm in high genus 3D surface WSNs. In Proceedings of IEEE INFOCOM. 981--989.
[63]
C. Wang, H. Jiang, T. Yu, and J. C. S. Lui. 2015. SLICE: Enabling greedy routing for large-scale 3D sensor networks with general topologies. IEEE/ACM Trans. Network. (2015), to appear.
[64]
L. Xie, Y. Shi, Y. T. Hou, and H. D. Sherali. 2012. Making sensor networks immortal: An energy-renewal approach with wireless power transfer. IEEE/ACM Trans. Network. 20, 6 (2012), 1748--1761.
[65]
K. Yang. 2014. Wireless Sensor Networks. Springer, Berlin.
[66]
Y. Yang, M. Jin, Y. Zhao, and H. Wu. 2013. Cut graph based information storage and retrieval in 3D sensor networks with general topology. In Proceedings of IEEE INFOCOM. 465--469.
[67]
Y. Yang, M. Jin, Y. Zhao, and H. Wu. 2015. Distributed information storage and retrieval in 3-D sensor networks with general topologies. IEEE/ACM Trans. Network. 23, 4 (2015), 1149--1162.
[68]
T. Yu, H. Jiang, G. Tan, C. Wang, C. Tian, and Y. Wu. 2013. SINUS: A scalable and distributed routing algorithm with guaranteed delivery for WSNs on high genus 3D surfaces. In Proceedings of IEEE INFOCOM. 2175--2183.
[69]
X. Yu, X. Yin, W. Han, J. Gao, and X. Gu. 2012. Scalable routing in 3D high genus sensor networks using graph embedding. In Proceedings of IEEE INFOCOM. 2681--2685.
[70]
C. Zhang, J. Luo, L. Xiang, F. Li, J. Lin, and Y. He. 2012. Harmonic quorum systems: Data management in 2D/3D wireless sensor networks with holes. In Proceedings of IEEE SECON. 1--9.
[71]
H. Zhang and H. Shen. 2009. Balancing energy consumption to maximize network lifetime in data-gathering sensor networks. IEEE Trans. Parallel. Distrib. Syst. 20, 10 (2009), 1526--1539.
[72]
Y. Zhang and W. Li. 2012. Modeling and energy consumption evaluation of a stochastic wireless sensor network. EURASIP J. Wireless Commun. Network. 2012, 1 (2012), 1--11.
[73]
H. Zhou, H. Wu, S. Xia, M. Jin, and N. Ding. 2011. A distributed triangulation algorithm for wireless sensor networks on 2D and 3D surface. In Proceedings of IEEE INFOCOM. 1053--1061.

Cited By

View all

Index Terms

  1. Connectivity-Based Space Filling Curve Construction Algorithms in High Genus 3D Surface WSNs

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Sensor Networks
    ACM Transactions on Sensor Networks  Volume 12, Issue 3
    August 2016
    304 pages
    ISSN:1550-4859
    EISSN:1550-4867
    DOI:10.1145/2976745
    • Editor:
    • Chenyang Lu
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 12 August 2016
    Accepted: 01 March 2016
    Revised: 01 March 2016
    Received: 01 June 2015
    Published in TOSN Volume 12, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3D surface WSNs
    2. connectivity-based algorithms
    3. high genus
    4. in-network data storage and retrieval
    5. iso-contour
    6. space filling curve

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • National Natural Science Foundation of Hubei Province
    • China Postdoctoral Science Foundation
    • National High Technology R&D Program (“863” Program) of China
    • Science and Technology Plan Projects of Wuhan City
    • Fundamental Research Funds for the Central Universities
    • National Natural Science Foundation of China

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media