skip to main content
research-article

Computational imaging with multi-camera time-of-flight systems

Published: 11 July 2016 Publication History

Abstract

Depth cameras are a ubiquitous technology used in a wide range of applications, including robotic and machine vision, human-computer interaction, autonomous vehicles as well as augmented and virtual reality. In this paper, we explore the design and applications of phased multi-camera time-of-flight (ToF) systems. We develop a reproducible hardware system that allows for the exposure times and waveforms of up to three cameras to be synchronized. Using this system, we analyze waveform interference between multiple light sources in ToF applications and propose simple solutions to this problem. Building on the concept of orthogonal frequency design, we demonstrate state-of-the-art results for instantaneous radial velocity capture via Doppler time-of-flight imaging and we explore new directions for optically probing global illumination, for example by de-scattering dynamic scenes and by non-line-of-sight motion detection via frequency gating.

Supplementary Material

MP4 File (a33.mp4)

References

[1]
Bamji, C., O'Connor, P., Elkhatib, T., Mehta, S., Thompson, B., Prather, L., Snow, D., Akkaya, O., Daniel, A., Payne, A., amd M. Fenton, T. P., and Chan, V. 2015. A 0.13 um CMOS System-on-Chip for a 512 x 424 Time-of-Flight Image Sensor With Multi-Frequency Photo-Demodulation up to 130 MHz and 2 GS/s ADC. IEEE Journal of Solid-State Circuits 50, 1, 303--319.
[2]
Bhandari, A., Kadambi, A., Whyte, R., Barsi, C., Feigin, M., Dorrington, A., and Raskar, R. 2014. Resolving multipath interference in time-of-flight imaging via modulation frequency diversity and sparse regularization. Optics Letters 39, 1705--1708.
[3]
Buades, A., Coll, B., and Morel, J.-M. 2005. A non-local algorithm for image denoising. In Proc. IEEE CVPR, vol. 2.
[4]
Buehler, C., Bosse, M., McMillan, L., Gortler, S., and Cohen, M. 2001. Unstructured lumigraph rendering. In Proc. SIGGRAPH, 425--432.
[5]
Butler, D., Izadi, S., Hilliges, O., Molyneaux, D., Hodges, S., and Kim, D. 2012. Shake'n'sense: reducing interference for overlapping structured light depth cameras. In Proc. ACM UIST, 1933--1936.
[6]
Büttgen, B., and Seitz, P. 2008. Robust optical time-of-flight range imaging based on smart pixel structures. IEEE Trans. Circuits and Systems 55, 6, 1512--1525.
[7]
Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. 2003. Free-viewpoint video of human actors. ACM Trans. Graph. (SIGGRAPH) 22, 3, 569--577.
[8]
Castaneda, V., Mateus, D., and Navab, N. 2014. Stereo time-of-flight with constructive interference. IEEE Trans. PAMI 36, 7, 1402--1413.
[9]
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. SIGGRAPH, 145--156.
[10]
Dong, S., Horstmeyer, R., Shiradkar, R., Guo, K., Ou, X., Bian, Z., Xin, H., and Zheng, G. 2014. Aperture-scanning fourier ptychography for 3d refocusing and super-resolution macroscopic imaging. Optics Express 22, 11, 13586--99.
[11]
Dorrington, A., Godbaz, J., Cree, M., Payne, A., and Streeter, L. 2011. Separating true range measurements from multi-path and scattering interference in commercial range cameras. In Proc. Electronic Imaging.
[12]
Freedman, D., Krupka, E., Smolin, Y., Leichter, I., and Schmidt, M. 2014. Sra: fast removal of general multipath for tof sensors. In Proc. ECCV.
[13]
Fuchs, S. 2010. Multipath interference compensation in time-of-flight camera images. In Proc. ICPR.
[14]
Gall, J., Ho, H., Izadi, S., Kohli, P., Ren, X., and Yang, R. 2014. Towards solving real-world vision problems with rgb-d cameras. In CVPR Tutorial.
[15]
Gariepy, G., Tonolini, F., and Jonathan Leach, R. H., and Faccio, D. 2016. Detection and tracking of moving objects hidden from view. Nature Photonics Letters 10, 23--26.
[16]
Gokturk, S., Yalcin, H., and Bamji, C. 2004. A time-of-flight depth sensor - system description, issues and solutions. In Proc. CVPR, 35--35.
[17]
Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The lumigraph. In Proc. SIGGRAPH.
[18]
Hansard, M., Lee, S., Choi, O., and Horaud, R. 2012. Time of Flight Cameras: Principles, Methods, and Applications. Springer.
[19]
Heide, F., Hullin, M. B., Gregson, J., and Heidrich, W. 2013. Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph. (SIGGRAPH) 32, 4, 45:1--45:10.
[20]
Heide, F., Xiao, L., Heidrich, W., and Hullin, M. B. 2014. Diffuse mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors. In Proc. CVPR.
[21]
Heide, F., Xiao, L., Kolb, A., Hullin, M. B., and Heidrich, W. 2014. Imaging in scattering media using correlation image sensors and sparse convolutional coding. Optics Express 22, 21, 26338--26350.
[22]
Heide, F., Heidrich, W., Hullin, M., and Wetzstein, G. 2015. Doppler Time-of-Flight Imaging. ACM Trans. Graph. (SIGGRAPH), 4.
[23]
Holloway, J., Salman Asif, M., Sharma, M. K., Matsuda, N., Horstmeyer, R., Cossairt, O., and Veeraraghavan, A. 2015. Toward Long Distance, Sub-diffraction Imaging Using Coherent Camera Arrays. ArXiv 1510.08470.
[24]
Jayasuriya, S., Pediredla, A., Sivaramakrishnan, S., Molnar, A., and Veeraraghavan, A. 2015. Depth fields: Extending light field techniques to time-of-flight imaging. In Proc. 3DV, 1--9.
[25]
Jimenez, D., Pizarro, D., Mazo, M., and Palazuelos, S. 2012. Modelling and correction of multipath interference in time of flight cameras. In Proc. CVPR.
[26]
Kadambi, A., Whyte, R., Bhandari, A., Streeter, L., Barsi, C., Dorrington, A., and Raskar, R. 2013. Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6.
[27]
Kadambi, A., Bhandari, A., Whyte, R., Dorrington, A., and Raskar, R. 2014. Demultiplexing Illumination via Low Cost Sensing and Nanosecond Coding. In Proc. ICCP.
[28]
Kim, S. K., Kang, B., Heo, J., Jung, S.-W., and Choi, O. 2014. Photometric stereo-based single time-of-flight camera. Optics Letters 39, 1, 166--169.
[29]
Kirmani, A., Hutchison, T., Davis, J., and Raskar, R. 2009. Looking around the corner using transient imaging. In Proc. ICCV, 159--166.
[30]
Lange, R., and Seitz, P. 2001. Solid-state time-of-flight range camera. IEEE J. Quantum Electronics 37, 3, 390--397.
[31]
Levoy, M., and Hanrahan, P. 1996. Light field rendering. In Proc. SIGGRAPH, 31--42.
[32]
Li, L., Xiang, S., Yang, Y., and Yu, L. 2015. Multi-camera interference cancellation of time-of-flight (tof) cameras. In Proc. IEEE ICIP, 556--560.
[33]
Maimone, A., and Fuchs, H. 2012. Reducing interference between multiple structured light depth sensors using motion. In Proc. VR.
[34]
Matusik, W., Buehler, C., Raskar, R., Gortler, S. J., and McMillan, L. 2000. Image-based visual hulls. In Proc. SIGGRAPH, 369--374.
[35]
McCandless, S. W., and Jackson, C. R. 2004. Principles of synthetic aperture radar. In AR Marine Users Manual, J. Fagerberg, D. C. Mowery, and R. R. Nelson, Eds. NOAA, ch. 1, 11.
[36]
Naik, N., Zhao, S., Velten, A., Raskar, R., and Bala, K. 2011. Single view reflectance capture using multiplexed scattering and time-of-flight imaging. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6, 171:1--171:10.
[37]
Naik, N., Kadambi, A., Rhemann, C., Izadi, S., Raskar, R., and Kang, S. 2015. A light transport model for mitigating multipath interference in tof sensors. In Proc. CVPR.
[38]
O'Toole, M., Heide, F., Xiao, L., Hullin, M. B., Heidrich, W., and Kutulakos, K. N. 2014. Temporal frequency probing for 5d transient analysis of global light transport. ACM Trans. Graph. (SIGGRAPH) 33, 4, 87:1--87:11.
[39]
Payne, A., Jongenelen, A., Dorrington, A., Cree, M., and Carnegie, D. 2009. Multiple Frequency Range Imaging to Remove Measurement Ambiguity. In Proc. Optical 3-D measurement techniques IX.
[40]
Peters, C., Klein, J., Hullin, M. B., and Klein, R. 2015. Solving trigonometric moment problems for fast transient imaging. ACM Trans. Graph. (SIGGRAPH Asia) 34, 6.
[41]
Rander, P., Narayanan, P. J., and Kanade, T. 1997. Virtualized reality: Constructing time-varying virtual worlds from real events. In Proc. IEEE Visualization, 277--283.
[42]
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. 2011. Real-time human pose recognition in parts from single depth images. In Proc. CVPR.
[43]
Tadano, R., Pediredla, A. K., and Veeraraghavan, A. 2015. Depth selective camera: A direct, on-chip, programmable technique for depth selectivity in photography. In Proc. IEEE ICCV.
[44]
Ti, C., Yang, R., Davis, J., and Pan, Z. 2015. Simultaneous Time-of-Flight Sensing and Photometric Stereo With a Single ToF Sensor. In Proc. CVPR.
[45]
Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M., and Raskar, R. 2012. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat Commun 745, 3.
[46]
Velten, A., Wu, D., Jarabo, A., Masia, B., Barsi, C., Joshi, C., Lawson, E., Bawendi, M., Gutierrez, D., and Raskar, R. 2013. Femto-photography: Capturing and visualizing the propagation of light. ACM Trans. Graph. (SIGGRAPH) 32, 4, 44:1--44:8.
[47]
Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High performance imaging using large camera arrays. ACM Trans. Graph. (SIGGRAPH) 24, 3, 765--776.
[48]
Woodham, R. J. 1980. Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 1.
[49]
Wu, D., Wetzstein, G., Barsi, C., Willwacher, T., O'Toole, M., Naik, N., Dai, Q., Kutulakos, K., and Raskar, R. 2012. Frequency analysis of transient light transport with applications in bare sensor imaging. In Proc. ECCV.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 4
July 2016
1396 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2897824
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2016
Published in TOG Volume 35, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational photography
  2. light fields
  3. time-of-flight

Qualifiers

  • Research-article

Funding Sources

  • Intuitive Surgical
  • KAUST Office of Sponsored Research
  • National Science Foundation
  • Intel Partnership on Visual and Experiential Computing

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)91
  • Downloads (Last 6 weeks)6
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media