skip to main content
research-article

Deformation-driven topology-varying 3D shape correspondence

Published: 02 November 2015 Publication History

Abstract

We present a deformation-driven approach to topology-varying 3D shape correspondence. In this paradigm, the best correspondence between two shapes is the one that results in a minimal-energy, possibly topology-varying, deformation that transforms one shape to conform to the other while respecting the correspondence. Our deformation model, called GeoTopo transform, allows both geometric and topological operations such as part split, duplication, and merging, leading to fine-grained and piecewise continuous correspondence results. The key ingredient of our correspondence scheme is a deformation energy that penalizes geometric distortion, encourages structure preservation, and simultaneously allows topology changes. This is accomplished by connecting shape parts using structural rods, which behave similarly to virtual springs but simultaneously allow the encoding of energies arising from geometric, structural, and topological shape variations. Driven by the combined deformation energy, an optimal shape correspondence is obtained via a pruned beam search. We demonstrate our deformation-driven correspondence scheme on extensive sets of man-made models with rich geometric and topological variation and compare the results to state-of-the-art approaches.

Supplementary Material

ZIP File (a236-alhashim.zip)
Supplemental files.

References

[1]
Aiger, D., Mitra, N. J., and Cohen-Or, D. 2008. 4-points congruent sets for robust surface registration. ACM Trans. on Graphics 27, 3, 1--10.
[2]
Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R., and Zhang, H. 2014. Topology-varying 3D shape creation via structural blending. ACM Trans. on Graphics 33, 4, Article 158.
[3]
Au, O. K.-C., Cohen-Or, D., Tai, C.-L., Fu, H., and Zheng, Y. 2010. Electors voting for fast automatic shape correspondence. Computer Graphics Forum (Proc. EUROGRAPHICS) 29, 2.
[4]
Au, O.-C., Zheng, Y., Chen, M., Xu, P., and Tai, C.-L. 2012. Mesh segmentation with concavity-aware fields. Visualization and Computer Graphics, IEEE Transactions on 18, 7 (July), 1125--1134.
[5]
Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '99, 187--194.
[6]
Bokeloh, M., Wand, M., Koltun, V., and Seidel, H.-P. 2011. Pattern-aware shape deformation using sliding dockers. ACM Trans. on Graphics 30, 123:1--123:10.
[7]
Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. on Visualization and Computer Graphics (TVCG) 14, 1, 213--230.
[8]
Gal, R., Sorkine, O., Mitra, N., and Cohen-or, D. 2009. iWires: An Analyze-and-Edit Approach to Shape Manipulation. ACM Trans. on Graphics 28, 3, 33:1--33:10.
[9]
Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. 2005. Robust global registration. In Proc. Symp. on Geom. Processing (SGP), 197--206.
[10]
Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Computers & Graphics (Proc. SMI) 33, 3, 262--269.
[11]
Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. 2001. Topology matching for fully automatic similarity estimation of 3D shapes. In Proc. SIGGRAPH, 203--212.
[12]
Hu, R., Fan, L., and Liu, L. 2012. Co-segmentation of 3D shapes via subspace clustering. Computer Graphics Forum (Proc. SGP) 31, 5, 1703--1713.
[13]
Huang, Q., and Guibas, L. 2013. Consistent shape maps via semidefinite programming. Computer Graphics Forum (Proc. SGP) 32, 5,
[14]
Huang, Q.-X., Adams, B., Wicke, M., and Guibas, L. J. 2008. Non-rigid registration under isometric deformations. Computer Graphics Forum (Proc. SGP) 27, 5, 1449--1457.
[15]
Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. ACM Trans. Graph. 30, 6 (Dec.), 125:1--125:12.
[16]
Huang, Q.-X., Su, H., and Guibas, L. 2013. Fine-grained semi-supervised labeling of large shape collections. ACM Trans. on Graphics 32, 6, 190:1--190:10.
[17]
Kaick, O. V., Fish, N., Kleiman, Y., Asafi, S., and Cohen-Or, D. 2014. Shape segmentation by approximate convexity analysis. ACM Trans. Graph. 34, 1 (Dec.), 4:1--4:11.
[18]
Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Trans. on Graphics 30, 4, 79:1--79:12.
[19]
Kim, V. G., Li, W., Mitra, N. J., Chaudhuri, S., DiVerdi, S., and Funkhouser, T. 2013. Learning Part-based Templates from Large Collections of 3D Shapes. ACM Trans. on Graphics (Proc. SIGGRAPH) 32, 4.
[20]
Laga, H., Mortara, M., and Spagnuolo, M. 2013. Geometry and context for semantic correspondences and functionality recognition in man-made 3d shapes. ACM Trans. on Graphics 32, 5, 150:1--150:16.
[21]
Lin, J., Cohen-Or, D., Zhang, H. R., Liang, C., Sharf, A., Deussen, O., and Chen, B. 2011. Structure-preserving retargeting of irregular 3d architecture. ACM Trans. on Graphics 30, 6, 183:1--183:10.
[22]
Lipman, Y., Chen, X., Daubechies, I., and Funkhouser, T. 2010. Symmetry factored embedding and distance. ACM Trans. on Graphics 29, 4, 103:1--12.
[23]
Lowerre, B. T. 1976. The harpy speech recognition system. PhD thesis, Carnegie Mellon University.
[24]
Meng, M., Xia, J., Luo, J., and He, Y. 2013. Unsupervised co-segmentation for 3d shapes using iterative multi-label optimization. Comput. Aided Des. 45, 2 (Feb.), 312--320.
[25]
Mitra, N., Wand, M., Zhang, H. R., Cohen-Or, D., Kim, V., and Huang, Q.-X. 2013. Structure-aware shape processing. In SIGGRAPH Asia 2013 Courses, 1:1--1:20.
[26]
Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3d shapes. ACM Trans. on Graphics 30, 4, 33:1--33:10.
[27]
Russ, J. C. 2011. The Image Processing Handbook, Sixth Edition, 6th ed. CRC Press, Inc., Boca Raton, FL, USA.
[28]
Sederberg, T. W., and Greenwood, E. 1992. A physically based approach to 2-D shape blending. In Proc. SIGGRAPH, 25--34.
[29]
Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 4 (Mar.), 249--259.
[30]
Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. on Graphics 30, 6, 126:1--126:9.
[31]
Tevs, A., Huang, Q., Wand, M., Seidel, H.-P., and Guibas, L. 2014. Relating shapes via geometric symmetries and regularities. ACM Trans. on Graphics 33, 4, 119:1--119:12.
[32]
van Dongen, S. 2000. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht.
[33]
van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2010. A survey on shape correspondence. Computer Graphics Forum 30, 6, 1681--1707.
[34]
van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., and Hamarneh, G. 2011. Prior knowledge for part correspondence. Computer Graphics Forum (Proc. EUROGRAPHICS) 30, 2.
[35]
van Kaick, O., Xu, K., Zhang, H., Wang, Y., Sun, S., Shamir, A., and Cohen-Or, D. 2013. Co-hierarchical analysis of shape structures. ACM Trans. on Graphics 32, 4, Article 69.
[36]
Wand, M., Adams, B., Ovsjanikov, M., Berner, A., Bokeloh, M., Jenke, P., Guibas, L., Seidel, H.-P., and Schilling, A. 2009. Efficient reconstruction of non-rigid shape and motion from real-time 3D scanner data. ACM Trans. on Graphics 28, 2, 1--15.
[37]
Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., and Xiong, Y. 2011. Symmetry hierarchy of man-made objects. Computer Graphics Forum (Proc. EUROGRAPHICS) 30, 2, 287--296.
[38]
Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z. 2010. Style-content separation by anisotropic part scales. ACM Trans. on Graphics 29, 5.
[39]
Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3d shape galleries. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4, 57:1--10.
[40]
Zhang, H., Sheffer, A., Cohen-Or, D., Zhou, Q., van Kaick, O., and Tagliasacchi, A. 2008. Deformation-driven shape correspondence. Computer Graphics Forum (Proc. SGP) 27, 5, 1431--1439.
[41]
Zheng, Y., Fu, H., Cohen-Or, D., Au, O. K.-C., and Tai, C.-L. 2011. Component-wise controllers for structure-preserving shape manipulation. Computer Graphics Forum (Proc. EUROGRAPHICS) 30, 2, 563--572.
[42]
Zheng, Y., Cohen-Or, D., Averkiou, M., and Mitra, N. J. 2014. Recurring part arrangements in shape collections. Computer Graphics Forum (Proc. EUROGRAPHICS) 33, 2.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 6
November 2015
944 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2816795
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 November 2015
Published in TOG Volume 34, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. deformation-driven
  2. shape correspondence
  3. structural rods
  4. topology-varying

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)21
  • Downloads (Last 6 weeks)4
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media