skip to main content
10.1145/2806416.2806452acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Finding Probabilistic k-Skyline Sets on Uncertain Data

Published: 17 October 2015 Publication History

Abstract

Skyline is a set of points that are not dominated by any other point. Given uncertain objects, probabilistic skyline has been studied which computes objects with high probability of being skyline. While useful for selecting individual objects, it is not sufficient for scenarios where we wish to compute a subset of skyline objects, i.e., a skyline set. In this paper, we generalize the notion of probabilistic skyline to probabilistic k-skyline sets (Pk-SkylineSets) which computes k-object sets with high probability of being skyline set. We present an efficient algorithm for computing probabilistic k-skyline sets. It uses two heuristic pruning strategies and a novel data structure based on the classic layered range tree to compute the skyline set probability for each instance set with a worst-case time bound. The experimental results on the real NBA dataset and the synthetic datasets show that Pk-SkylineSets is interesting and useful, and our algorithms are efficient and scalable.

References

[1]
P. Afshani, P. K. Agarwal, L. Arge, K. G. Larsen, and J. M. Phillips. (approximate) uncertain skylines. In ICDT, pages 186--196, 2011.
[2]
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, 1994.
[3]
M. J. Atallah and Y. Qi. Computing all skyline probabilities for uncertain data. In PODS, pages 279--287, 2009.
[4]
M. J. Atallah, Y. Qi, and H. Yuan. Asymptotically efficient algorithms for skyline probabilities of uncertain data. ACM Trans. Database Syst., 36(2):12, 2011.
[5]
I. Bartolini, P. Ciaccia, and M. Patella. The skyline of a probabilistic relation. IEEE Trans. Knowl. Data Eng., 25(7):1656--1669, 2013.
[6]
I. Bartolini, P. Ciaccia, and M. Patella. Domination in the probabilistic world: Computing skylines for arbitrary correlations and ranking semantics. ACM Trans. Database Syst., 39(2):14, 2014.
[7]
J. L. Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214--229, 1980.
[8]
J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson. On the average number of maxima in a set of vectors and applications. J. ACM, 25(4):536--543, 1978.
[9]
S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages 421--430, 2001.
[10]
B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algorithmica, 1(2):133--162, 1986.
[11]
B. Chazelle and L. J. Guibas. Fractional cascading: II. applications. Algorithmica, 1(2):163--191, 1986.
[12]
M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf. Computational geometry. Springer, 2000.
[13]
V. Fisikopoulos. An implementation of range trees with fractional cascading in c. CoRR, abs/1103.4521, 2011.
[14]
A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages 47--57, 1984.
[15]
M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski. Skyline query processing for uncertain data. In CIKM, pages 1293--1296, 2010.
[16]
D. G. Kirkpatrick and R. Seidel. Output-size sensitive algorithms for finding maximal vectors. In Symposium on Computational Geometry, pages 89--96, 1985.
[17]
H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. J. ACM, 22(4):469--476, 1975.
[18]
X. Lian and L. Chen. Monochromatic and bichromatic reverse skyline search over uncertain databases. In SIGMOD Conference, 2008.
[19]
X. Lin, Y. Zhang, W. Zhang, and M. A. Cheema. Stochastic skyline operator. In ICDE, pages 721--732, 2011.
[20]
J. Liu, L. Xiong, J. Pei, J. Luo, and H. Zhang. Finding pareto optimal groups: group-based skyline. PVLDB, 2015.
[21]
J. Liu, L. Xiong, and X. Xu. Faster output-sensitive skyline computation algorithm. Inf. Process. Lett., 114(12):710--713, 2014.
[22]
X. Liu, D.-N. Yang, M. Ye, and W.-C. Lee. U-skyline: A new skyline query for uncertain databases. IEEE Trans. Knowl. Data Eng., 25(4):945--960, 2013.
[23]
J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In VLDB, pages 15--26, 2007.
[24]
J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline: A semantic approach based on decisive subspaces. In VLDB, 2005.
[25]
D. Sacharidis, A. Arvanitis, and T. K. Sellis. Probabilistic contextual skylines. In ICDE, pages 273--284, 2010.
[26]
Q. Zhang, P. Ye, X. Lin, and Y. Zhang. Skyline probability over uncertain preferences. In EDBT, pages 395--405, 2013.
[27]
W. Zhang, X. Lin, Y. Zhang, M. A. Cheema, and Q. Zhang. Stochastic skylines. ACM Trans. Database Syst., 37(2):14, 2012.
[28]
W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu. Probabilistic skyline operator over sliding windows. In ICDE 2009, pages 1060--1071, 2009.
[29]
Y. Zhang, W. Zhang, X. Lin, B. Jiang, and J. Pei. Ranking uncertain sky: The probabilistic top-k skyline operator. Inf. Syst., 36(5):898--915, 2011.

Cited By

View all

Index Terms

  1. Finding Probabilistic k-Skyline Sets on Uncertain Data

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CIKM '15: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
    October 2015
    1998 pages
    ISBN:9781450337946
    DOI:10.1145/2806416
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 October 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. probabilistic
    2. sets
    3. skyline
    4. uncertain

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CIKM'15
    Sponsor:

    Acceptance Rates

    CIKM '15 Paper Acceptance Rate 165 of 646 submissions, 26%;
    Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

    Upcoming Conference

    CIKM '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 09 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media