skip to main content
research-article

Online control of simulated humanoids using particle belief propagation

Published: 27 July 2015 Publication History

Abstract

We present a novel, general-purpose Model-Predictive Control (MPC) algorithm that we call Control Particle Belief Propagation (C-PBP). C-PBP combines multimodal, gradient-free sampling and a Markov Random Field factorization to effectively perform simultaneous path finding and smoothing in high-dimensional spaces. We demonstrate the method in online synthesis of interactive and physically valid humanoid movements, including balancing, recovery from both small and extreme disturbances, reaching, balancing on a ball, juggling a ball, and fully steerable locomotion in an environment with obstacles. Such a large repertoire of movements has not been demonstrated before at interactive frame rates, especially considering that all our movement emerges from simple cost functions. Furthermore, we abstain from using any precomputation to train a control policy offline, reference data such as motion capture clips, or state machines that break the movements down into more manageable subtasks. Operating under these conditions enables rapid and convenient iteration when designing the cost functions.

Supplementary Material

ZIP File (a81-hamalainen.zip)
Supplemental files

References

[1]
Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T. 2002. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 2, 174--188.
[2]
Borno, M. A., Fiume, E., Hertzmann, A., and de Lasa, M. 2014. Feedback control for rotational movements in feature space. Comput. Graph. Forum 33, 2, 225--233.
[3]
Coros, S., Beaudoin, P., and van de Panne, M. 2010. Generalized biped walking control. ACM Trans. Graph. 29, 4 (July), 130:1--130:9.
[4]
Da Silva, M., Abe, Y., and Popović, J. 2008. Simulation of Human Motion Data using Short-Horizon Model-Predictive Control. Comput. Graphics Forum 27, 2, 371--380.
[5]
Eele, A., Maciejowski, J., Chau, T., and Luk, W. 2013. Parallelisation of Sequential Monte Carlo for real-time control in air traffic management. In Proc. CDC 2013, 4859--4864.
[6]
Geijtenbeek, T., and Pronost, N. 2012. Interactive Character Animation Using Simulated Physics: A State-of-the-Art Review. Comput. Graphics Forum 31, 8, 2492--2515.
[7]
Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F. 2013. Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. 32, 6 (Nov.), 206:1--206:11.
[8]
Guo, S., Southern, R., Chang, J., Greer, D., and Zhang, J. 2014. Adaptive motion synthesis for virtual characters: a survey. The Visual Computer, 1--16.
[9]
Ha, S., Ye, Y., and Liu, C. K. 2012. Falling and landing motion control for character animation. ACM Trans. Graph. 31, 6, 155:1--155:9.
[10]
Hämäläinen, P., Eriksson, S., Tanskanen, E., Kyrki, V., and Lehtinen, J. 2014. Online motion synthesis using sequential monte carlo. ACM Trans. Graph. 33, 4 (July), 51:1--51:12.
[11]
Ihler, A. T., and Mcallester, D. A. 2009. Particle belief propagation. In Proc. International Conference on Artificial Intelligence and Statistics, 256--263.
[12]
Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Trans. Graph. 28, 1 (Feb.), 10:1--10:12.
[13]
Janson, L., Clark, A., and Pavone, M. 2013. Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions. arXiv preprint arXiv:1306.3532.
[14]
Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. 2011. STOMP: Stochastic trajectory optimization for motion planning. In Proc. ICRA 2011, IEEE, 4569--4574.
[15]
Kantas, N., Maciejowski, J., and Lecchini-Visintini, A. 2009. Sequential monte carlo for model predictive control. In Nonlinear Model Predictive Control. Springer, 263--273.
[16]
Kappen, H. J., Gómez, V., and Opper, M. 2012. Optimal control as a graphical model inference problem. Machine learning 87, 2, 159--182.
[17]
Lavalle, S. M. 1998. Rapidly-exploring random trees: A new tool for path planning. Tech. rep., Iowa State Univ.
[18]
Lee, Y., Kim, S., and Lee, J. 2010. Data-driven Biped Control. ACM Trans. Graph. 29, 4, 129:1--129:8.
[19]
Liu, L., Yin, K., van de Panne, M., and Guo, B. 2012. Terrain Runner: Control, Parameterization, Composition, and Planning for Highly Dynamic Motions. ACM Trans. Graph. 31, 6, 154:1--154:10.
[20]
Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust Physics-based Locomotion Using Low-dimensional Planning. ACM Trans. Graph. 29, 4, 71:1--71:8.
[21]
Mordatch, I., Todorov, E., and Popović, Z. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4 (July), 43:1--43:8.
[22]
Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28, 3, 81:1--81:9.
[23]
Pejsa, T., and Pandzic, I. 2010. State of the Art in Example-Based Motion Synthesis for Virtual Characters in Interactive Applications. Comput. Graphics Forum 29, 1, 202--226.
[24]
Schmidt, R. A., and Wrisberg, C. A. 2008. Motor Learning and Performance, 4rd ed. Human Kinetics.
[25]
Stahl, D., and Hauth, J. 2011. PF-MPC: Particle filter-model predictive control. Syst. Control Lett. 60, 8, 632--643.
[26]
Sudderth, E. B., Ihler, A. T., Isard, M., Freeman, W. T., and Willsky, A. S. 2010. Nonparametric belief propagation. Commun. ACM 53, 10, 95--103.
[27]
Tan, J., Gu, Y., Liu, C. K., and Turk, G. 2014. Learning bicycle stunts. ACM Trans. Graph. 33, 4, 50:1--50:12.
[28]
Tassa, Y., Erez, T., and Todorov, E. 2012. Synthesis and stabilization of complex behaviors through online trajectory optimization. In Proc. IROS, 4906--4913.
[29]
Tassa, Y., Mansard, N., and Todorov, E. 2014. Control-limited differential dynamic programming. In Proc. ICRA 2014, IEEE, 1168--1175.
[30]
Todorov, E. 2008. General duality between optimal control and estimation. In Proc. CDC 2008, 4286--4292.
[31]
Toussaint, M. 2009. Robot trajectory optimization using approximate inference. In Proc. ICML 2009.
[32]
Wampler, K., Popović, Z., and Popović, J. 2014. Generalizing locomotion style to new animals with inverse optimal regression. ACM Trans. Graph. 33, 4 (July), 49:1--49:11.
[33]
Witkin, A., and Kass, M. 1988. Spacetime Constraints. SIGGRAPH Comput. Graph. 22, 4, 159--168.
[34]
Wu, J.-C., and Popović, Z. 2010. Terrain-adaptive bipedal locomotion control. ACM Trans. Graph. 29, 4, 72:1--72:10.
[35]
Xu, J., Duindam, V., Alterovitz, R., and Goldberg, K. 2008. Motion planning for steerable needles in 3d environments with obstacles using rapidly-exploring random trees and backchaining. In Proc. CASE 2008, IEEE, 41--46.
[36]
Ye, Y., and Liu, C. K. 2010. Optimal Feedback Control for Character Animation Using an Abstract Model. ACM Trans. Graph. 29, 4, 74:1--74:9.
[37]
Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26, 3.

Cited By

View all

Index Terms

  1. Online control of simulated humanoids using particle belief propagation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 34, Issue 4
    August 2015
    1307 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2809654
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 July 2015
    Published in TOG Volume 34, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. animation
    2. motion planning
    3. motion synthesis
    4. optimization

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)25
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 01 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media