skip to main content
10.1145/2744680.2744685acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
short-paper

Adaptive Reprogramming for Databases on Heterogeneous Processors

Published: 31 May 2015 Publication History

Abstract

It is clear by now that modern processing hardware gets increasingly heterogeneous, which forces data processing algorithms to care about the underlying hardware. However, current approaches for implementing data intensive operators (e.g., in database systems) either cause enormous programming effort for tuning one algorithm to several processors (the hardware-sensitive way), or do not fully exploit possible performance possibilities because of an abstract operator description (the hardware-oblivious way). In this thesis, we propose an algorithm optimizer, which automatically tunes a hardware-oblivious operator description to the underlying hardware. This way, the DBMS can rewrite its operator code until it runs optimally on the given hardware.

References

[1]
M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge joins in main memory multi-core database systems. VLDB, 5(10):1064--1075, 2012.
[2]
C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-memory joins: Sort vs. hash revisited. VLDB, 7(1):85--96, 2013.
[3]
C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. Main-memory hash joins on multi-core CPUs: Tuning to the underlying hardware. ICDE, pages 362--373, 2013.
[4]
P. Boncz, S. Manegold, and M. L. Kersten. Optimizing database architecture for the new bottleneck: Memory access. In VLDB, volume 9, pages 231--246. Springer, 1999.
[5]
S. Breß. The design and implementation of CoGaDB: A column-oriented GPU-accelerated DBMS. Datenbank-Spektrum, 2014.
[6]
S. Breß, F. Beier, H. Rauhe, K.-U. Sattler, E. Schallehn, and G. Saake. Efficient co-processor utilization in database query processing. Inf. Sys., 38(8):1084--1096, 2013.
[7]
D. Broneske, S. Breß, M. Heimel, and G. Saake. Toward hardware-sensitive database operations. In EDBT, pages 229--234, 2014.
[8]
D. Broneske, S. Breß, and G. Saake. Database Scan Variants on Modern CPUs: A Performance Study. In IMDM@VLDB, pages 97--111. Springer, 2014.
[9]
K. J. Brown, A. K. S. H. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Olukotun. A heterogeneous parallel framework for domain-specific languages. In PACT, pages 89--100, 2011.
[10]
K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In SC, pages 1--12, 2008.
[11]
A. Deshpande, Z. Ives, and V. Raman. Adaptive Query Processing. FTDB, 1(1):1--140, 2007.
[12]
T. Grosser, A. Groesslinger, and C. Lengauer. Polly - performing polyhedral optimizations on a low-level intermediate representation. Parallel Processing Letters, 22(04), 2012.
[13]
B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational query co-processing on graphics processors. In TODS, volume 34. pp. 21:1--21:39. ACM, 2009.
[14]
B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. Luo, and P. Sander. Relational joins on graphics processors. In SIGMOD, pages 511--524, 2008.
[15]
J. He, M. Lu, and B. He. Revisiting co-processing for hash joins on the coupled CPU-GPU architecture. VLDB, 6(10):1--14, 2013.
[16]
M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-oblivious parallelism for in-memory column-stores. VLDB, 6(9):709--720, 2013.
[17]
S. Jha, M. Lu, X. Cheng, B. He, and H. P. Huynh. Improving main memory hash joins on Intel Xeon Phi processors: An experimental approach. VLDB, 8(6), 2015.
[18]
T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. GPU join processing revisited. In DaMoN, pages 55--62. ACM, 2012.
[19]
C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D. Nguyen, A. D. Blas, V. W. Lee, N. Satish, and P. Dubey. Sort vs. hash revisited: Fast join implementation on modern multi-core CPUs. VLDB, 2(2):1378--1389, 2009.
[20]
Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query engines in a high-level language. VLDB, 7(10):853--864, 2014.
[21]
R. Mueller, J. Teubner, and G. Alonso. Sorting networks on FPGAs. VLDB Journal, 21(1):1--23, June 2011.
[22]
O. Polychroniou and K. A. Ross. High throughput heavy hitter aggregation for modern SIMD processors. In DaMoN, pages 37--42, 2013.
[23]
O. Polychroniou and K. A. Ross. Vectorized bloom filters for advanced SIMD processors. In DaMoN, pages 49--54, 2014.
[24]
K. A. Ross. Selection conditions in main-memory. TODS, 29(1):132--161, 2004.
[25]
B. Rǎducanu, P. Boncz, and M. Zukowski. Micro adaptivity in vectorwise. In SIGMOD, pages 1231--1242, 2013.
[26]
E. A. Sitaridi and K. A. Ross. Optimizing select conditions on GPUs. In DaMoN, pages 22--30, 2013.
[27]
T. Willhalm, Y. Boshmaf, H. Plattner, N. Popovici, A. Zeier, and J. Schaffner. SIMD-Scan: Ultra fast in-memory table scan using on-chip vector processing units. PVLDB, 2(1):385--394, 2009.
[28]
T. Willhalm, I. Oukid, I. Müller, and F. Faerber. Vectorizing database column scans with complex predicates. In ADMS, pages 1--12, 2013.
[29]
S. Zhang, J. He, B. He, and M. Lu. OmniDB: Towards portable and efficient query processing on parallel CPU/GPU architectures. VLDB, 2(1):1374--1377, 2013.
[30]
J. Zhou and K. A. Ross. Implementing database operations using SIMD instructions. In SIGMOD, pages 145--156, 2002.
[31]
M. Zukowski, S. Héman, and P. Boncz. Architecture-conscious hashing. In DaMoN, pages 41--49, 2006.

Index Terms

  1. Adaptive Reprogramming for Databases on Heterogeneous Processors

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGMOD '15 PhD Symposium: Proceedings of the 2015 ACM SIGMOD on PhD Symposium
    May 2015
    62 pages
    ISBN:9781450335294
    DOI:10.1145/2744680
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 May 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. adaptivity
    2. co-processor acceleration
    3. code generation
    4. domain-specific language
    5. heterogeneous hardware
    6. simd

    Qualifiers

    • Short-paper

    Conference

    SIGMOD/PODS'15
    Sponsor:
    SIGMOD/PODS'15: International Conference on Management of Data
    May 31, 2015
    Victoria, Melbourne, Australia

    Acceptance Rates

    SIGMOD '15 PhD Symposium Paper Acceptance Rate 9 of 11 submissions, 82%;
    Overall Acceptance Rate 40 of 60 submissions, 67%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 191
      Total Downloads
    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media