skip to main content
research-article
Open access

Divergence analysis

Published: 03 January 2014 Publication History

Abstract

Growing interest in graphics processing units has brought renewed attention to the Single Instruction Multiple Data (SIMD) execution model. SIMD machines give application developers tremendous computational power; however, programming them is still challenging. In particular, developers must deal with memory and control-flow divergences. These phenomena stem from a condition that we call data divergence, which occurs whenever two processing elements (PEs) see the same variable name holding different values. This article introduces divergence analysis, a static analysis that discovers data divergences. This analysis, currently deployed in an industrial quality compiler, is useful in several ways: it improves the translation of SIMD code to non-SIMD CPUs, it helps developers to manually improve their SIMD applications, and it also guides the automatic optimization of SIMD programs. We demonstrate this last point by introducing the notion of a divergence-aware register spiller. This spiller uses information from our analysis to either rematerialize or share common data between PEs. As a testimony of its effectiveness, we have tested it on a suite of 395 CUDA kernels from well-known benchmarks. The divergence-aware spiller produces GPU code that is 26.21% faster than the code produced by the register allocator used in the baseline compiler.

References

[1]
Abel, N. E., Budnik, P. P., Kuck, D. J., Muraoka, Y., Northcote, R. S., and Wilhelmson, R. B. 1969. TRANQUIL: A language for an array processing computer. In Proceedings of AFIPS. ACM, 57--73.
[2]
Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. 2006. Compilers: Principles, Techniques, and Tools 2nd Ed. Addison Wesley.
[3]
Aiken, A. and Gay, D. 1998. Barrier inference. In Proceedings of POPL. ACM, 342--354.
[4]
Appel, A. W. 1998. SSA is functional programming. SIGPLAN Not. 33, 4, 17--20.
[5]
Baghsorkhi, S. S., Delahaye, M., Patel, S. J., Gropp, W. D., and Hwu, W.-M. W. 2010. An adaptive performance modeling tool for GPU architectures. In Proceedings of PPoPP. ACM, 105--114.
[6]
Belady, L. A. 1966. A study of replacement algorithms for a virtual storage computer. IBM Syst. J. 5, 2, 78--101.
[7]
Blelloch, G. and Chatterjee, S. 1990. Vcode: A data-parallel intermediate language. In Proceedings of FMPC. ACM, 471--480.
[8]
Boudier, P. and Sellers, G. 2011. Memory system on Fusion APUs. In Proceedings of the AMD Fusion Developer Summit. AMD.
[9]
Bougé, L. and Levaire, J.-L. 1992. Control structures for data-parallel SIMD languages: Semantics and implementation. Future Gen. Comput. Syst. 8, 4, 363--378.
[10]
Bouknight, W., Denenberg, S. A., McIntyre, D. E., Randall, J. M., Sameh, A. H., and Slotnick, D. L. 1972. The Illiac IV system. IEEE 60, 4, 369--388.
[11]
Briggs, P., Cooper, K. D., and Torczon, L. 1992. Rematerialization. In Proceedings of PLDI. ACM, 311--321.
[12]
Brockmann, K. and Wanka, R. 1997. Efficient oblivious parallel sorting on the MasPar MP-1. Vol. ICSS. 1, 200.
[13]
Budimlic, Z., Cooper, K. D., Harvey, T. J., Kennedy, K., Oberg, T. S., and Reeves, S. W. 2002. Fast copy coalescing and live-range identification. In Proceedings of PLDI. ACM, 25--32.
[14]
Carrillo, S., Siegel, J., and Li, X. 2009. A control-structure splitting optimization for GPGPU. In Proceedings of the 6th ACM Conference Computing Frontiers. ACM, 147--150.
[15]
Cederman, D. and Tsigas, P. 2009. GPU-quicksort: A practical quicksort algorithm for graphics processors. J. Exp. Algorithmics 14, 1, 4--24.
[16]
Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and Skadron, K. 2009. Rodinia: A benchmark suite for heterogeneous computing. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC). IEEE, 44--54.
[17]
Choi, J.-D., Cytron, R., and Ferrante, J. 1991. Automatic construction of sparse data flow evaluation graphs. In Proceedings of POPL. ACM, 55--66.
[18]
Collange, S., Defour, D., and Zhang, Y. 2009. Dynamic detection of uniform and affine vectors in GPGPU computations. In Proceedings of the Parallel Processing Workshop (HPPC). Lecture Notes in computer science, vol. 6043, Springer, 46--55.
[19]
Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear restraints among variables of a program. In Proceedings of POPL. ACM, 84--96.
[20]
Coutinho, B., Sampaio, D., Pereira, F. M. Q., and Meira, W. 2011. Divergence analysis and optimizations. In Proceedings of International Conference on Parallel Architecture and Compilation Techniques (PACT). IEEE, 320--329.
[21]
Coutinho, B., Sampaio, D., Pereira, F. M. Q., and Meira, W. 2013. Profiling divergences in GPU applications. Concur. Comput. Pract. Exp. 25, 6, 775--789.
[22]
Cunningham, D., Bordawekar, R., and Saraswat, V. 2011. GPU programming in a high level language: Compiling ×10 to CUDA. In Proceedings of the ACM SIGPLAN X10 Workshop. ACM, 8:1--8:10.
[23]
Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991. Efficiently computing static single assignment form and the control dependence graph. ACM Trans. Program. Lang. Syst. 13, 4, 451--490.
[24]
Darema, F., George, D. A., Norton, V. A., and Pfister, G. F. 1988. A single-program-multiple-data computational model for EPEX/FORTRAN. Parallel Comput. 7, 1, 11--24.
[25]
Diamos, G., Kerr, A., Yalamanchili, S., and Clark, N. 2010. Ocelot, a dynamic optimization framework for bulk-synchronous applications in heterogeneous systems. In Proceedings of the International Conference on Parallel Architecture and Compilation Techniques (PACT). IEEE, 354--364.
[26]
Dubach, C., Cheng, P., Rabbah, R., Bacon, D. F., and Fink, S. J. 2012. Compiling a high-level language for GPUS: (via language support for architectures and compilers). In Proceedings of ACM SIGPLAN PLDI. ACM, 1--12.
[27]
Farrell, C. A. and Kieronska, D. H. 1996. Formal specification of parallel SIMD execution. Theo. Comp. Science 169, 1, 39--65.
[28]
Ferrante, J., Ottenstein, K. J., and Warren, J. D. 1987. The program dependence graph and its use in optimization. ACM Trans. Program. Lang. Syst. 9, 3, 319--349.
[29]
Flynn, M. 1972. Some computer organizations and their effectiveness. IEEE Trans. Comput. 21, 9, 948--960.
[30]
Fung, W. W. L., Sham, I., Yuan, G., and Aamodt, T. M. 2007. Dynamic warp formation and scheduling for efficient GPU control flow. In Proceedings of IEEE/ACM MICRO. IEEE, 407--420.
[31]
Garland, M. and Kirk, D. B. 2010. Understanding throughput-oriented architectures. Comm. ACM 53, 58--66.
[32]
Gou, C. and Gaydadjiev, G. 2013. Addressing GPU on-chip shared memory bank conflicts using elastic pipeline. Int. J. Parallel Program. 41, 3, 400--429.
[33]
Grover, V., Joannes, B., Aarts, M., and Murphy, M. 2009. Variance analysis for translating CUDA code for execution by a general purpose processor. U.S. Patent 2009/0259997, Filed March 31, 2009, and issued October 15, 2009.
[34]
Hack, S. and Goos, G. 2006. Optimal register allocation for SSA-form programs in polynomial time. Inf. Process. Lett. 98, 4, 150--155.
[35]
Han, T. D. and Abdelrahman, T. S. 2011. Reducing branch divergence in GPU programs. In Proceedings of GPGPU-4. ACM, 3:1--3:8.
[36]
Jang, B., Schaa, D., Mistry, P., and Kaeli, D. 2010. Static memory access pattern analysis on a massively parallel GPU. In Proceedings of PLDI. ACM.
[37]
Karrenberg, R. and Hack, S. 2011. Whole-function vectorization. In Proceedings of the 9th IEEE/ACM CGO. IEEE, 141--150.
[38]
Karrenberg, R. and Hack, S. 2012. Improving performance of OpenCL on CPUS. In Proceedings of CC. Springer, 1--20.
[39]
Keryell, R., Materat, P., and Paris, N. 1991. POMP, or how to design a massively parallel machine with small developments. In Proceedings of Parallel Architectures and Languages Europe (PARLE). Lecture Note in Computer Science, vol. 505, Springer, 83--100.
[40]
Kung, S.-Y., Arun, K. S., Gal-Ezer, R. J., and Bhaskar Rao, D. V. 1982. Wavefront array processor: Language, architecture, and applications. IEEE Trans. Comput. 31, 1054--1066.
[41]
Lashgar, A. and Baniasadi, A. 2011. Performance in GPU architectures: Potentials and distances. In Proceedings of the 9th Workshop on Duplicating, Deconstructing, and Debunking (WDDD). IEEE, 75--81.
[42]
Lawrie, D. H., Layman, T., Baer, D., and Randal, J. M. 1975. GLYPNIR-a programming language for ILLIAC IV. Comm. ACM 18, 3, 157--164.
[43]
Lee, S., Min, S.-J., and Eigenmann, R. 2009. OpenMP to GPGPU: A compiler framework for automatic translation and optimization. In Proceedings of ACM SIGPLAN PPoPP. ACM, 101--110.
[44]
Lee, Y., Avizienis, R., Bishara, A., Xia, R., Lockhart, D., Batten, C., and Asanovic, K. 2011. Exploring the tradeoffs between programmability and efficiency in data-parallel accelerators. In Proceedings of the 38th International Symposium on Computer Architecture (ISCA). ACM, 129--140.
[45]
Lee, Y., Krashinsky, R., Grover, V., Keckler, S. W., and Asanovic, K. 2013. Convergence and scalarization for data-parallel architectures. In Proceedings of the IEEE/ACM CGO. ACM, 1--11.
[46]
Leiba, R., Hack, S., and Wald, I. 2012. Extending a C-like language for portable SIMD programming. In Proceedings of ACM SIGPLAN PPOPP. ACM, 65--74.
[47]
Meng, J., Tarjan, D., and Skadron, K. 2010. Dynamic warp subdivision for integrated branch and memory divergence tolerance. In Proceedings of the International Symposium on Computer Architecture (ISCA). ACM, 235--246.
[48]
Miné, A. 2006. The octagon abstract domain. Higher Order Symbol. Comput. 19, 31--100.
[49]
Mu, S., Zhang, X., Zhang, N., Lu, J., Deng, Y. S., and Zhang, S. 2010. IP routing processing with graphic processors. In Proceedings of DATE. IEEE, 93--98.
[50]
Nickolls, J. and Dally, W. J. 2010. The GPU computing era. IEEE Micro 30, 2, 56--69.
[51]
Nickolls, J. and Kirk, D. 2009. Graphics and Computing GPUs. Computer Organization and Design, (Patterson and Hennessy) 4th Ed. Elsevier, Chapter A, A.1--A.77.
[52]
Nielson, F., Nielson, H. R., and Hankin, C. 2005. Principles of Program Analysis. Springer.
[53]
Ottenstein, K. J., Ballance, R. A., and MacCabe, A. B. 1990. The program dependence Web: A representation supporting control-, data-, and demand-driven interpretation of imperative languages. In Proceedings of ACM SIGPLAN PLDI. ACM, 257--271.
[54]
Pereira, F. M. Q. 2011. Dirmap's Blog. http://divmap.wordpress.com/.
[55]
Perrot, R. H. 1979. A language for array and vector processors. ACM Trans. Program. Lang. Syst. 1, 177--195.
[56]
Pharr, M. and Mark, W. R. 2012. ISPC: A SPMD compiler for high-performance CPU programming. In Proceedings of Innorative Parallel Computing (InPar).
[57]
Poletto, M. and Sarkar, V. 1999. Linear scan register allocation. ACM Trans. Program. Lang. Syst. 21, 5, 895--913.
[58]
Prabhu, T., Ramalingam, S., Might, M., and Hall, M. 2011. EigenCFA: Accelerating flow analysis with GPUs. In Proceedings of POPL. ACM.
[59]
Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., and mei W. Hwu, W. 2008. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In Proceedings of ACM SIGPLAN PPoPP. ACM, 73--82.
[60]
Saha, B., Zhou, X., Chen, H., Gao, Y., Yan, S., Rajagopalan, M., Fang, J., Zhang, P., Ronen, R., and Mendelson, A. 2009. Programming model for a heterogeneous ×86 platform. In Proceedings of ACM SIGPLAN PLDI. ACM, 431--440.
[61]
Samadi, M., Hormati, A., Mehrara, M., and Mahlke, S. 2012. Adaptive input-aware compilation for graphics engines. In Proceedings of ACM SIGPLAN PLDI. ACM.
[62]
Sampaio, D., Martins, R., Collange, S., and Pereira, F. M. Q. 2012a. Divergence analysis with affine constraints. In Proceedings of the 24th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). IEEE, 137--146.
[63]
Sampaio, D. N., Gedeon, E., Pereira, F. M. Q., and Collange, S. 2012b. Spill code placement for simd machines. In Proceedings of the 16th Brazilian Symposium on Language Programmings (SBLP). Lecture Notes on Computer Science, vol. 7554, Springer, 12--26.
[64]
Sandes, E. F. O. and de Melo, A. C. M. 2010. CUDALIGN: Using GPU to accelerate the comparison of megabase genomic sequences. In Proceedings of ACM SIGPLAN PPoPP. ACM, 137--146.
[65]
Scholz, B., Zhang, C., and Cifuentes, C. 2008. User-input dependence analysis via graph reachability. Tech. rep., Sun, Inc.
[66]
Stratton, J. A., Grover, V., Marathe, J., Aarts, B., Murphy, M., Hu, Z., and Hwu, W.-m. W. 2010. Efficient compilation of fine-grained SPMD-threaded programs for multicore CPUs. In Proceedings of IEEE/ACM CGO. IEEE, 111--119.
[67]
Stratton, J. A., Rodrigues, C., Sun, I.-J., Obeid, N., Chang, L.-W., Anssari, N., Liu, G. D., and mei W. Hwu, W. 2012. The parboil report. Tech. rep., University of Illinois at Urbana-Champaign.
[68]
Tu, P. and Padua, D. 1995. Efficient building and placing of gating functions. In Proceedings of ACM SIGPLAN PLDI. ACM, 47--55.
[69]
Weiser, M. 1981. Program slicing. In Proceedings of ICSE. IEEE, 439--449.
[70]
Yang, Y., Xiang, P., Kong, J., and Zhou, H. 2010. A GPGPU compiler for memory optimization and parallelism management. In Proceedings of ACM SIGPLAN PLDI. ACM, 86--97.
[71]
Zhang, E. Z., Jiang, Y., Guo, Z., and Shen, X. 2010. Streamlining GPU applications on the fly: Thread divergence elimination through runtime thread-data remapping. In Proceedings of the 24th ACM International Conference on Supercomputing (ICS). ACM, 115--126.
[72]
Zhang, E. Z., Jiang, Y., Guo, Z., Tian, K., and Shen, X. 2011. On-the-fly elimination of dynamic irregularities for GPU computing. In Proceedings of ASPLOS. ACM, 369--380.
[73]
Zhang, Y. and Owens, J. D. 2011. A quantitative performance analysis model for GPU architectures. In Proceedings of the IEEE 17th International Symposium on High Performance Computer Architecture (HPCA). ACM, 382--393.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Programming Languages and Systems
ACM Transactions on Programming Languages and Systems  Volume 35, Issue 4
December 2013
169 pages
ISSN:0164-0925
EISSN:1558-4593
DOI:10.1145/2560142
Issue’s Table of Contents
© 2014 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 January 2014
Accepted: 01 August 2013
Revised: 01 June 2013
Received: 01 December 2012
Published in TOPLAS Volume 35, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. SIMD
  2. Static program analysis
  3. divergence analysis
  4. graphics processing units
  5. high performance

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)257
  • Downloads (Last 6 weeks)39
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media