skip to main content
article
Free access

Parallel graph algorithms

Published: 02 September 1984 Publication History
First page of PDF

References

[1]
AHO, A., HOPCROFT, J, AND ULLMAN, J. 1974. The Design and Analysis of Computer Algorithms Addison-Wesley, Reading, Mass.
[2]
ALTON, D. A., AND ECKSTEIN, D. M~ 1979. Parallel breadth-first search of p-sparse graphs. In Proceed~ngs of the West Coast Conference on Combinator~cs, Graph Theory and Computing (Arcata, Calif., Sept. 5-7). Humbolt State Univ. Congressus Numerant~um 26.
[3]
ARJOMANDI, E. 1975. A study of parallelism in graph theory. Ph.D dissertation, Dept. of Computer Science, University of Toronto, Toronto, Ontario.
[4]
ATALLAH, M. J. 1983. Algorithms for VLSI networks of processors. Ph.D. dissertation, Dept. of Electrical Engineering and Computer Science, The Johns Hopkins Univ., Baltimore, Md.
[5]
ATALLAH, M. J., AND KOSARAJU, S. R. 1982. Graph problems on a mesh-connected processor array (preliminary version). In Proceedings of the 14th Annual A CM Symposium on Theory o{ Computing (San Francisco, Calif., May 5-7). ACM, New York, pp. 345-353.
[6]
BATCHER, K. E. 1968. Sorting networks and their applications. In Proceedings of the Spring Joint Computer Conference (Atlantic City, N.J., Apr. 30-May 2), vol. 32. AFIPS Press, Reston, Va., pp. 307-314.
[7]
BATCHER, K. E. 1979. The STARAN computer. In Infotech State of the Art Report: Supercomputers, vol. 2, C. R. Jesshope and R. C. Hockney, Eds. Infotech, Maidenhead, England, pp. 33-49.
[8]
B^TCHER, K. E. 1980. Design of massively parallel processor. IEEE Trans Comput. C-29, 836- 840.
[9]
BENTLEY, J. L. 1980. A parallel algorithm for constructing minimum spanning trees. J. Algorithms I, I (Mar.), 51-59.
[10]
B~NTLEY, J. L, AND KUNG, H. T. 1979. A tree machine for searching problems. In Proceedings o{ the 1979 International Con{erence on Parallel Processing. IEEE, New York, pp. 257-266.
[11]
BERG, H. K., BOEBERT, W. E., FRANTA, W. R., AND MOHER, T. G. 1982. Formal Methods o{ Program Verifwation and Specification. Prentice- Hall, Englewood Cliffs, N.J., chap. 6.
[12]
BILARDI, G., PRACCHI, M., AND PREPARATA, F. P. 1981. A critique and appraisal of VLSI models of computation. In VLSI Systems and Computat~ons, H. T. Kung, R. Sproull, and G. Steele, Eds. Computer Science Press, Rockville, Md., pp. 81- 88.
[13]
BROWNINa, S. A. 1980a. The tree machine: A highly concurrent computing environment. Ph.D. dissertation, Dept. of Computer Science, California Inst. of Technology, Pasadena, Calif.
[14]
BROWNING, S. A. 1980b. Algorithms for the tree machine. In Introduction to VLSI Systems, C. Mead and L. Conway, Eds. Addison-Wesley, Reading, Mass.
[15]
CHANDRA, A. K. 1976. Maximal parallelism in matrix multiplicatwn. IBM Tech. Rep. RC6193, Thomas J. Watson Research Center, Yorktown Heights, N.Y. (Sept.), 9 pp.
[16]
CHANDRA, A. K., AND STOCKMEYER, L. J. 1976. Alternation. In Proceedings of the 17th Annual Symposium on Foundations of Computer Science. IEEE, New York, pp. 98-108.
[17]
CHANDY, K. M, AND MISRA, J. 1982. Distributed computation on graphs: Shortest path algorithms. Commun ACM 25, 11 (Nov.), 833-837.
[18]
CHAZELLE, B., AND MONIER, L. 1981. A model of computation for VLSI with related complexity results. In Proceedings o{ the 13th Annual ACM Symposium on Theory of Computing (Milwaukee, Wis., May 11-13). ACM, New York, pp. 318-325.
[19]
CHEN, I.-N. 1975. A new parallel algorithm for network flow problems. In Parallel Processing, Lecture Notes m Computer Sciences, vol. 24. Springer-Verlag, Berlin and New York, pp. 306-307.
[20]
CHEN, Y. K., AND FENG, T. 1973. A parallel algorithm for maximum flow problem. In Proceedings of the 1973 Computer Conference on Parallel Processing (Sagamore, N.Y.), p. 60.
[21]
CHERITON, D., AND TAP. JAN, R. E. 1976. Finding mimmum spanning trees. SIAM J. Comput. 5, 4 (Dec.), 724-742.
[22]
CHIN, F. Y., LAM, J., AND CHEN, i.-N. 1981. Optimal parallel algorithms for the connected component problem. In Proceedings of the 1981 International Conference on Parallel Processing. iEEE, New York, pp. 170-175.
[23]
CHIN, F. Y., LAM, J., AND CHEN, I.-N. 1982. Efficient parallel algorithms for some graph problem. Commun ACM 25, 9 (Sept.), 659-665.
[24]
COOK, S. A. 1974. An observation on time-storage trade-off. J. Comput. Syst ScL 9, 3, 308-316.
[25]
CRANE, B. A. 1968. Path finding with associative memory. IEEE Trans Comput. C-17, 7 (July), 691-693.
[26]
CRANE, B. A., GILMARTIN, M. J., HUTTENHOFF, J. H., RVx, P. T., AND SmVELY, R. R 1972. PEPE computer architecture. COMPCON 72 Digest, IEEE, New York, pp. 57-60.
[27]
DEKEL, E., AND SAHNI, S. 1982. A parallel matching algorithm for convex bipartite graphs. In Proceedings o{ the 1982 International Conference on Parallel Processzng. IEEE, New York, pp. 178- 184.
[28]
DEKEL, E, AND SAHNI, S. 1983a. Parallel scheduling algorithms. Oper Res. 31, 1 (Jan.-Feb.), 24-49.
[29]
DEKEL, E., AND SAHNI, S. 1983b. Binary trees and parallel scheduling algorithms. IEEE Trans Comput. C-32, 3 (Mar.), 307-315.
[30]
DEKEL, E., NASSiM!, D., AND SAHNI, S. 1981. Parallel matrix and graph algorithms. SIAM J. Comput. 10, 4 (Nov.), 657-675.
[31]
DENELCOR 1981. Heterogeneous element processor prmciples of operation. Publ. No. 9000001, HEP Technical Documentation Series, Denelcor, Inc., Denver, Colo.
[32]
DEO, N. 1974. Graph Theory w~th Applications to Engineering and Computer Scasnce. Prentice- Hail, New York.
[33]
DEO, N., AND YOO, Y. B. 1981. Parallel algorithms for the minimum spanning tree problem. In Proceedings o{ the 1981 International Conference on Parallel Processing IEEE, New York, pp. 188- 189.
[34]
DEO, N., PANG, C. Y., AND LORD, P. E. 1980. Two parallel algorithms for shortest path problems. In Proceedings of the 1980 International Con/erence on Parallel Processing. IEEE, New York, pp. 244- 253.
[35]
DIJKSTRA, E. 1959. A note on two problems in connexion with graphs. Numer. Math i, 269-271.
[36]
DOBKIN, D., LIPTON, R. J., AND REiSS, S. 1979. Linear programming is log-space hard for P. Inf. Process Lett. '9, 2 (Aug.), 6-97.
[37]
DYMOND, P. W., AND COOK, S. A. 1980. Hardware complexity and parallel computation (preliminary version), in Proceedings o{ the 21st Annual Symposium on Foundattons o{ Computing. IEEE, New York, pp. 360-372.
[38]
ECKSTEIN, D. M. 1979a. Simultaneous memory accesses. Tech. Rep. 79-6, Dept. of Computer Science, Iowa State Univ. of Science and Technology, Ames, Iowa.
[39]
ECKSTEIN, D. M. 1979b. BFS and biconnectivity. Tech. Rep. 79-11, Dept. of Computer Science, Iowa State Univ. of Science and Technology, Ames, Iowa, 55 pp.
[40]
ECKSTEIN, D. M., AND ALTON, D. A. 1977a. Parallel searching of non-sparse graphs. Tech. Rep. 77- 02, Dept. of Computer Science, The Umv. of iowa, Iowa City, Iowa, 35 pp.
[41]
ECKSTEiN, D. M., AND ALTON, D. A. 1977b. Parallel graph processing using depth-first search. In Proceedings o{ the Con{erence on Theoretical Computer Scasnce (Waterloo, Ontario, Aug.). Univ. of Waterloo, Waterloo, Ontario, pp. 21-29.
[42]
FALK, H. 1976. Reaching for the gigaflop. IEEE Spectrum 13, 10 (Oct.), 64-70.
[43]
FEIERBACH, G., AND STEVENSON, D. 1979 The IL- LIAC IV. In infotech State of the Art Report. Supercomputers, vol. 2, C. R. Jesshope and R. W. Hockney, Eds. Infotech, Maidenhead, England, pp. 77-92.
[44]
FLANDERS, P. M., HUNT, D. J., REDDAWAY, S. F., AND PARKINSON, D. 1977. Efficient high speed computing w~th the distributed array processor. In High Speed Computer and Algorithm Organisation. Academic Press, London, pp. 113-128.
[45]
FLOYD, R. W. 1962. Algorithm 97: Shortest path. Commun. ACM 5, 6 (June), 345.
[46]
FLYNN, M. J. 1966. Very high-speed computing systerns. Proc iEEE 54, 12 (Dec.), 1901-1909.
[47]
FOSTER, M. J., AND KUNG, H. T. 1980. Design of special-purpose VLSI chips--Example and opinions. Computer 13, 1 (Jan.), 26-40.
[48]
FULLER, S. H., AND OLEiNICK, P. N. 1976. Initml measurements of parallel programs m a multimmlprocessor. In Proceedings of the 13th IEEE Computer Society lnternatmnal Conference. IEEE, New York, pp. 358-363.
[49]
FUNG, L. 1977. A massively parallel processing computer. In Htgh Speed Computer and Algorithm Organ~sat~on, D. J. Kuck, D. H. Lawrie, and A. H. Sameh, Eds. Academic Press, London, England, pp. 203-204.
[50]
GALIL, Z. 1976. Hierarchies of complete problems. Acta Inf. 6, 77-88.
[51]
GAUL, Z., AND PAUL, W. J. 1981. An efficient general purpose parallel computer. In Proceedings of the 13th Annual ACM Sympostum on Theory of Computing (Milwaukee, Wis., May 11-13). ACM, New York, pp. 247-262.
[52]
GALIL, Z., AND PAUL, W. J. 1983. An efficient general-purpose parallel computer. J A CM 30, 2 (Apr.), 360-387.
[53]
GALLAGHER, R. G., HUMBLET, P. A., AND SPIRA, P. M. 1983. A distributed algorithm for minimumweight spanning trees. A CM Trans. Program. Lang Syst. 5, i (Jan.), 66-77.
[54]
GAREY, M. R., AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of the NP-Completeness. Freeman, San Francisco, Calif.
[55]
GENTLEMAN, W. M. 1978. Some complexity results for matrix computations on parallel processors. J. ACM 25, 1 (Jan.), 112-115.
[56]
GLOVER, F. 1967. Maximum watching in a convex bipartite graph. In Naval Res Logist Q. 14, 313- 316.
[57]
GOLDEN, B., BODIN, L., DOYLE, T., AND STEWART, W., JR 1980 Approximate traveling salesman algorithms. Oper. Res. 28, 3 (May-June), Part 2, 694-711.
[58]
GOLDSCHLAGER, L. M. 1977a. The monotone and planar c~rcuit value problems are log space complete for P SIGACT News 9, 2 (Summer), 25-29.
[59]
GOLDSCHLAGER, L. M. 1977b Synchronous parallel computation. Tech. Rep. 114, Computer Science Dept., University of Toronto, Toronto, Ontario.
[60]
GOLDSCHLAGER, L. M. 1978. A unified approach to models of synchronous parallel machines. In Proceed~ngs o{ the lOth Annual ACM Sympostum on Theory of Computing ACM, New York, pp. 89- 94.
[61]
GOLDSCHLAGER, L. M. 1982. A universal interconnection pattern for parallel computers. J. A CM 29, 4 (Oct.), 1073-1086.
[62]
GOLDSCHLAGER, L. M., SHAW, R. A., AND STAPLES, J. 1982. The maximum flow problem is log space complete for P. Theor Comput. Sci 21 (Oct.), 105-111.
[63]
GREIF, I. 1977. A language for formal problem specifications. Commun ACM 20, 12 (Dec.), 931-935.
[64]
GUISAS, L. J., KUNC, H. T, AND THOMPSON, C D. 1979. Direct VLSI implementation of combinatorial algorithms. In Proceedings of the Conference on Very Large Scale Integratton' Architecture, Design, Fabrwatlon (Pasadena, Calif., Jan.). California Institute of Technology, Pasadena, Calif., pp. 509-525.
[65]
HAMBRUSCH, S. E. 1982. The complexity of graph problems on VLSI. Ph.D. dissertation, Computer Science Dept., The Pennsylvania State Univ., University Park, Pa.
[66]
HAMBRUSCH, S. E. 1983. VLSI algorithms for the connected component problem. SIAM J. Comput. 12, 2 (May), 364-365.
[67]
HARARY, F. 1969. Graph Theory. Addison-Wesley, Reading, Mass.
[68]
HARRISON, T. J., AND WILSON, M. W. 1983. Specialpurpose computers. In Encyclopedia of Computer Sclence and Engineering, 2nd ed., A. Ralston, Ed. Van Nostrand-Reinhold, New York, pp. 1385- 1393.
[69]
HnYNES, L. S., LAU, R. L., SIEWIOREK, D. P., AND M!ZELL, D. 1982. A survey of highly parallel computing. Computer 14, 1 (Jan.), 9-24.
[70]
HIGSIE, L. C. 1972. The OMEN computers: Associative array processors. In COMPCON 72 Digest, IEEE, New York, pp. 287-290.
[71]
HIRSCHBERG, D. S. 1976. Parallel algorithms for the transitive closure and the connected component problem. In Proceedings o{ the 8th Annual ACM Symposium on the Theory of Computing. ACM, New York, pp. 55-57.
[72]
HIRSCHBERG, D. S. 1982. Parallel graph algorithms without memory conflicts. In Proceedings o{ the 20th AUerton Conference. University of Illinois, Urbana-Champaign, II1., pp. 257-263.
[73]
HIRSCHBERG, D. S., CHANDRA, A. K., AND SARWATE, D. V. 1979. Computing connected components on parallel computers. Commun. A CM 22, 8 (Aug.), 461-464.
[74]
HOCKNE~, R. W., AND JESSHOPE, C. R. 1981. Parallel Computers: Architecture, Programming, and Algortthms. Adam Hilger, Bristol, England.
[75]
ISARAK!, T. 1976. Theoretical comparisons of search strategqes in branch-and-bound algorithms. Int. J Comput Inf. Sci. 5, 4, 315-344.
[76]
JA'JA', J., AND SIMON, J. 1982. Parallel algorithms in graph theory: Planarity testing. SIAM J. Cornput 11, 2 (May), 314-328.
[77]
JOHNSON, D. S. 1983. The NP-completeness column: An ongoing guide. J. Algorithms 4, 189-203.
[78]
JONES, A. K., AND SCHWARZ, P. 1980. Experience using multiprocessor systems--A status report. ACM Comput. Surv. 12, 2 (June), 121-165.
[79]
JONES, N. D., AND LAASER, W. T. 1976. Complete problems for deterministic polynomial time. Theor. Comput. ScL 3, 1, 105-117.
[80]
KEDEM, Z. M., AND ZORaT, A. 1981. On relations between input and communication/computation in VLSI (preliminary report). In Proceedings of the 22nd Annual Symposium on Foundations o{ Computer Science. IEEE, New York, pp. 37-44.
[81]
KELLER, R M 1976. Formal verification of parallel programs. Commun. ACM 19, 7 (July), 371-384.
[82]
KOSARAJU, S. R. 1979. Fast parallel processing array algorithms for some graph problems. In Proceedings of the llth Annual ACM Symposium on Theory of Computing ACM, New York, pp. 231- 236.
[83]
KOZEN, D. 1977. Complexity of finitely presented algebras. In Proceedings of the 9th Annual A CM Symposium on Theory o{ Computing. ACM, New York, pp. 164-177.
[84]
KRUSKAL, J. B. 1956. On the shortest subtree of a graph and the traveling-s~lesman problem. Proc Amer. Math. Soc 7 (Feb.), 48-50.
[85]
KU~ERA, L. 1982. Parallel computation and conflicts m memory access. Inf Process Lett. 14, 2 (20 Apr.), 93-96.
[86]
KUN(~, H. T. 1980. The structure of parallel algorithms. In Advances m Computers, vol. 19, M. Yovits, Ed Academm Press, New York, pp. 65- 112
[87]
KUNG, H. T. 1982. Why systolic architectures~ Computer 15, 1 (Jan.), 37-46.
[88]
KUNG, H. T., AND LEISERSON, C. E. 1980. Systolic arrays for VLSi. In Introductton to VLSI Systems, C. Mead and L. Conway, Eds. Addison- Wesley, Reading, Mass., pp. 260-292.
[89]
LADNER, R. E. 1975. The circuit value problem m log space complete for P. SIGACT News 7, 1 (Jan.), 18-20.
[90]
LAMPORT, L. 1977. Proving the correctness of multlprocess programs. IEEE Trans Soft. Eng. SE-3, 7 (Mar.), 125-143.
[91]
LAMPORT, L 1979. Proving the correctness of multlprocess programs. ACM Trans Progress Lang. Sys i, i (July), 86-97.
[92]
LAWRIE, D. H. 1975. Access and alignment of data m an array processor. IEEE Trans Comput. C-24, 12 (Dec.), 1145-1155.
[93]
LEIGHTON, F. T. 1981. New lower bound techniques for VLSI In Proceedings of the 22nd Annual Symposmm on Foundations of Computer Science IEEE, New York, pp. 1-12.
[94]
LEISERSON, C. E. 1980. Area efficient graph layouts. In Proceedings of the 21st Annual Symposmm on Foundations o{ Computer Science IEEE, New York, pp. 270-281.
[95]
LEmERSON, C. E. 1983. Area-Effxient VLSI Computation MIT Press, Cambridge, Mass.
[96]
LEISERSON, C. E., AND SAXE, J. B. 1981. Opt, mizmg synchronous systems. In Proceedings of the 22nd Annual Symposmm on Foundations of Computer Scaence. IEEE, New York, pp. 23-36.
[97]
LEVlALDI, S. 1972. On shrinking binary picture patterns. Commun ACM 15, I (Jan.), 2-10.
[98]
LEVITT, K N., AND KAUTZ, W. T. 1972 Cellular arrays for the solution of graph problems. Commun ACM 15, 9 (Sept), 789-801
[99]
LINT, B., AND AGERWALA, T. 1981 Communication issues in the design and analysis of parallel algorithms IEEE Trans Softw Eng. SE-7, 2 (Mar.), 174-188.
[100]
LIPTON, R J., AND VALDES, J. 1981. Census functions: An approach to VLSI upper bounds (preliminary version). In Proceedings of the 22nd Annual Symposium on Foundatmns of Computer Science. IEEE, New York, pp. 13-22.
[101]
LITTLE, J. D. C., MURTY, K. G., SWEENEY, D. W., ANO KAREL, C. 1963. An algorithm for the traveling salesman problem. Oper. Res 11, 6 (Nov.- Dec.), 972-989.
[102]
MASHBURN, H. H. 1979. The C.mmp/Hydra project: An architectural overview. Tech. Rep., Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa.
[103]
MATETI, P., AND DEO, N. 1981. Parallel algorithms for the single source shortest path problem. Tech. Rep. CS-81-078, Computer Science Dept., Washington State Univ., Pullman, Wash., 38 pp.
[104]
MEAD, C., AND CONWAY, L. 1980. Introduction to VLSI Systems Addmon-Wesley, Reading, Mass.
[105]
MISRA, J., AND CHANDY, K. M. 1982. A distributed graph algorithm: Knot detection. A CM Trans Progress. Lang. Syst 4, 4 (Oct.), 678-686.
[106]
MOHAN, J. 1983. Experience with two parallel programs solving the traveling salesman problem. In Proceedings of the 1983 Internatlonal Conference on Parallel Processing IEEE, New York, pp. 191- 193
[107]
MOORE, E. F. 1957. The shortest path through a maze In Proceedings of the international Symposium on the Theory of Switching, vol. 2, pp. 285-292.
[108]
NASSlMI, D, AND SAHNI, S. 1979. Bltonic sort on a mesh connected parallel computer. IEEE Trans Comput. C-28, i (Jan.), 2-7.
[109]
NASSlMI, D., AND SAHNI, S 1980a An optimal routmg algorithm for mesh-connected parallel computers. J. ACM 27, i (Jan.), 6-29
[110]
NASSlMI, D., AND SAHNI, S. 1980b. Finding connected components and connected ones on a mesh-connected parallel computer. SIAM J Comput 9, 4 (Nov.), 744-757.
[111]
NATH, D., AND MAHESHWARI, S. N. 1982. Parallel algorithms for the connected components and minimal spanning tree problems. Inf. Process. Lett 14, 1 (27 Mar.), 7-11.
[112]
OLEINICK, P. 1978. The implementation of parallel algorithms on an asynchronous multiprocessor. Ph.D. dissertation, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa.
[113]
OWlCKI, S., AND GRIES, D. 1976. Verifying properties of parallel programs: An axiomatic approach. Commun. ACM 19, 5 (May), 279-285.
[114]
OWlCK!, S., AND LAMPORT, L. 1982. Proving hveness properties of concurrent programs. ACM Trans Program. Lang Sys 4, 3 (July), 455-495.
[115]
PAPE, U. 1974. Implementation and efficiency of Moore-algorithms for the shortest route problem Math Program 7, 2 (Oct.), 212-222.
[116]
PREPARATA, F. P., AND VUILLEMIN, J. 1981. The cube-connected cycles: A versatile network for parallel computation. Cornmun A CM 24, 5 (May), 300-309.
[117]
PRICE, C. C. 1982. A VLSI algorithm for shortest path through a directed acyclic graph., Congressus Numerantium 34, 363-371.
[118]
PRICE, C C. 1983. Task assignment using a VLSI shortest path algorithm Tech. Rep., Dept. of Computer Science, Stephen F. Austin State Umv., Nacogdoches, Tex.
[119]
PRIM, R. C. 1957. Shortest connection networks and some generalizations. Bell Syst Tech J. 36, 1389- 1401.
[120]
QUINN, M. J. 1983. The design and analysis of algorithms and data structures for the efficient solution of graph theoretic problems on MIMD computers. Ph.D. dissertation, Computer Science Dept., Washington State Univ, Pullman, Wash.
[121]
QUINN, M J., AND DEO, N. 1983. An approximate algorithm for the Euclidean traveling salesman problem Tech. Rep. CS-83-105, Computer Science Dept., Washington State Univ., Pullman, Wash
[122]
REDOAWAY, S. F 1979 The DAP approach In Infotech State of the Art Report' Supercomputers, vol. 2, C. R. Jesshope and R. W. Hockney, Eds. Infotech, Maidenhead, England, pp. 311-329.
[123]
REGHBATi (ARJOMANDI), E., AND CORNEIL, D. G. 1978. Parallel computations in graph theory. SIAM J. Comput 2, 2 (May), 230-237.
[124]
REW, J. H. 1982 Symmetric complementatlon. In Proceedings of the 14th Annual ACM Symposium on Theory o{ Computing (San Francisco, Calif., May 5-7). ACM, New York, pp. 201-214.
[125]
REtF, J. H., A~D SPmAKIS, P 1982. The expected time complexity of parallel graph and digraph algorithms. Tech. Rep. TR-11-82, A~ken Computation Laboratory, Harvard Umv, Cambridge, Mass
[126]
REINGOLD, E., NiEVERGELT, J., AND DEO, N. 1977. Comblnatortal Algorithms Theory and Practzce Prentice-Hall, New York.
[127]
ROSENKRANTZ, D., STEARNS, R, AND LEWIS, P. 1974. Approximate algorithms for the traveling saleperson problem. In Proceedings of the 15th Annual iEEE Symposium on Switching and Automata Theory. IEEE, New York, pp. 33-42.
[128]
SAVAGE, C. 1977. Parallel algorithms for graph theoretic problems Ph D. dissertation, Mathematics Dept., Univ. of Illinois, Urbana, II1.
[129]
SAVAGE, C. 1981. A systolic data structure chip for connectivity problems. In VLSI Systems and Computations, H. T. Kung, R. F. Sproull, and G. L. Steele, Jr., Eds. Computer Science Press, Rockville, Md.
[130]
SAVAGE, C., AND JA'JA', J. 1981. Fast, efficient parallel algorithms for some graph problems. SIAM J Comput. I0, 4 (Nov.), 682-690.
[131]
SAVAGE, J. E 1981. Planar circuit complemty and the performance of VLSI algorithms. In VLSI Systems and Computations, H T. Kung, R F. Sproull, and G. Steele, Jr., Eds. Computer Science Press, Rockville, Md., pp. 61-66.
[132]
SHILOACH, Y., AND VISHKIN, U. 1982a. An O(log n) parallel connectivity algorithm. J Algorithms 3, i (Mar.), 57-67.
[133]
SHILOACH, Y., AND VISHKIN, U. 1982b. An O(ne log n) parallel MAX-FLOW algorithm. J. Algorithms 3, 2 (June), 128-146.
[134]
SIEGEL, H. J. 1979. A model of SIMD machines and a comparison of various interconnection networks IEEE Trans. Comput. C-28, 12 (Dec.), 907-917.
[135]
SMITH, B. J. 1978 A pipelined shared resource MIMD computer. In Proceedings of the 1978 International Conference on Parallel Processing. IEEE, New York, pp. 6-8.
[136]
SOLLIN, M. 1977. An algorithm attributed to Sollin. In lntroductton to the Design and Analysis of Algorzthms, S. E. Goodman and S. T. Hedetniemi, Eds McGraw-Hill, New York, sect. 5.5.
[137]
STONE, H S. 1971. Parallel processing with the perfect shuffle. IEEE Trans Comput. C-20, 2 (Feb.), 153-161
[138]
STONE, H. S. 1980. Parallel computers. In lntroduct~on to Computer Architecture, H. S. Stone, Ed. Science Research Associates Chicago, I11., chap. 8.
[139]
SWAN, R. J., BECHTOLSHEIM, A., LAI, K.-W., AND OUSTERHOUT, J. K. 1977. The implementatwn of the Cm* multi-microprocessor. In Proceedings of the National Computer Conference (Dallas, Tex., June 13-16), vol. 46. AFIPS Press, Reston, Va., pp. 645-655.
[140]
THOMPSON, C. D. 1979. Area-time complexity for VLSI. In Proceedings of the 11th Annual ACM Symposium on Theory of Computing. ACM, New York, pp. 81-88.
[141]
THOMPSON, C. D. 1980. A complexity theory for VLSi. Ph.D. dissertation, Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa.
[142]
THOMPSON, C. D., AND KUNG, H. T. 1976. Sorting on a mesh connected computer. In Proceedings of the 8th Annual ACM Symposium on Theory of Computing. ACM, New York, pp. 58-64.
[143]
TSIN, Y. H., ANO CHIN, F. Y. 1982. Efficient parallel algorithms for a class of graph theoretic problems. Tech. Rep., Dept. of Computing Science, Univ. of Alberta, Edmonton, Alberta, 45 pp. (to appear in SIAM J Comput ).
[144]
VAN ScoY, F. L. 1976. Parallel algorithms in cellular spaces. Ph.D. dissertation, School of Engineering and Applied Science, Univ. of Virginia, Charlottesville, Va.
[145]
VISHKIN, U. 1983. Implementation of simultaneous memory access in models that forbid it. J. Algonthms 4, 1 (Mar.), 45-50.
[146]
VUILLEMIN, J. E. 1983. A combinatorial limit to the computing power of VLSI circuits. IEEE Trans. Comput C-32, 3 (Mar.), 294-300.
[147]
WARSHALL, S. 1962. A theorem on Boolean matrices. J ACM 9, 1 (Jan.), 11, 12.
[148]
WEIOE, B. 1977. A survey of analysis techniques for d~screte algorithms. A CM Comput. Surv. 9, 4 (Dec.), 291-313.
[149]
WULF, W., AND HARBISON, S. P. 1978. Reflections in a pool of processors. Tech. Rep., Dept. of Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa.
[150]
~VYLLIE, J. C. 1979. The complexity of parallel computations. Ph.D. dissertation, Dept. of Computer Science, Cornell Univ., Ithaca, N.Y.
[151]
YAO, C.-C. 1975. An O(IEI log log }V}) algorithm for finding minimum spanning trees. Inf. Process. Lett. 4, 1 (Sept.), 21-23.
[152]
YAv, S. S., A~o FVNG, H. S. 1977. Associative processor architecture--A survey. A CM Comput. Surv. 9, 1 (Mar.), 3-27.
[153]
Yoo, Y. B. 1983. Parallel processing for some network optimization problems. Ph.D. dissertation, Computer Science Dept., Washington State Univ., Pullman, Wash.

Cited By

View all

Recommendations

Reviews

Andranik Mirzaian

After an introduction and terminology section, this survey article contains a brief discussion of various parallel computational models, such as SIMD, MIMD and their variants, systolic arrays, and associative processors. There is a section on unweighted graph algorithms where such problems as graph searching, connected-components, transitive closure, biconnected-components and strongly-connected-components, lowest-common ancestors, k-connectivity, triconnectivity and testing planarity, maximum clique, and maximum cardinality matching in convex-bipartite graphs are covered. Some of these problems are given more attention than others. For instance, the fundamental problem of graph searching is well covered. The next section is on weighted-graph algorithms. In this section, the minimum spanning tree, the shortest paths, and the traveling salesman problems are covered in some detail. There is a brief mention of other problems such as max-flow. The last section gives a summary of this survey. This article contains 153 references. A few areas, as the authors acknowledge, are not covered (for instance, systolic algorithms). There is, however, a brief mention of some probabilistic algorithms. Overall, this is a good survey and is worth reading. It highlights some of the important algorithmic and data-structuring techniques developed for parallel graph computation. However, it has a number of shortcomings. Certain important work is not referenced at all, such as [1].

Access critical reviews of Computing literature here

Become a reviewer for Computing Reviews.

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 16, Issue 3
Sept. 1984
83 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/2514
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 September 1984
Published in CSUR Volume 16, Issue 3

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)690
  • Downloads (Last 6 weeks)97
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media