skip to main content
research-article

A survey of appearance models in visual object tracking

Published: 08 October 2013 Publication History

Abstract

Visual object tracking is a significant computer vision task which can be applied to many domains, such as visual surveillance, human computer interaction, and video compression. Despite extensive research on this topic, it still suffers from difficulties in handling complex object appearance changes caused by factors such as illumination variation, partial occlusion, shape deformation, and camera motion. Therefore, effective modeling of the 2D appearance of tracked objects is a key issue for the success of a visual tracker. In the literature, researchers have proposed a variety of 2D appearance models.
To help readers swiftly learn the recent advances in 2D appearance models for visual object tracking, we contribute this survey, which provides a detailed review of the existing 2D appearance models. In particular, this survey takes a module-based architecture that enables readers to easily grasp the key points of visual object tracking. In this survey, we first decompose the problem of appearance modeling into two different processing stages: visual representation and statistical modeling. Then, different 2D appearance models are categorized and discussed with respect to their composition modules. Finally, we address several issues of interest as well as the remaining challenges for future research on this topic.
The contributions of this survey are fourfold. First, we review the literature of visual representations according to their feature-construction mechanisms (i.e., local and global). Second, the existing statistical modeling schemes for tracking-by-detection are reviewed according to their model-construction mechanisms: generative, discriminative, and hybrid generative-discriminative. Third, each type of visual representations or statistical modeling techniques is analyzed and discussed from a theoretical or practical viewpoint. Fourth, the existing benchmark resources (e.g., source codes and video datasets) are examined in this survey.

References

[1]
Adam, A., Rivlin, E., and Shimshoni, I. 2006. Robust fragments-based tracking using the integral histogram. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 798--805.
[2]
Allili, M. S. and Ziou, D. 2007. Object of interest segmentation and tracking by using feature selection and active contours. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--8.
[3]
Andriluka, M., Roth, S., and Schiele, B. 2008. People-tracking-by-detection and people-detection-by-tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--8.
[4]
Arsigny, V., Fillard, P., Pennec, X., and Ayache, N. 2006. Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29, 1, 328--347.
[5]
Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. 2002. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Trans. Signal Proces. 50, 2, 174--188.
[6]
Austvoll, I. and Kwolek, B. 2010. Region covariance matrix-based object tracking with occlusions handling. In Computer Vision and Graphics, Lecture Notes in Computer Science, vol. 6374, Springer Berlin, 201--208.
[7]
Avidan, S. 2004. Support vector tracking. IEEE Trans. Pattern Anal. Mach. Intell. 26, 8, 1064--1072.
[8]
Avidan, S. 2007. Ensemble tracking. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2, 261--271.
[9]
Babenko, B., Yang, M., and Belongie, S. 2009. Visual tracking with online multiple instance learning. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 983--990.
[10]
Bai, Y. and Tang, M. 2012. Robust tracking via weakly supervised ranking svm. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1854--1861.
[11]
Bao, C., Wu, Y., Ling, H., and Ji, H. 2012. Real time robust l1 tracker using accelerated proximal gradient approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1830--1837.
[12]
Bay, H., Tuytelaars, T., and Gool, L. V. 2006. Surf: Speeded up robust features. In Proceedings of the European Conference on Computer Vision. 404--417.
[13]
Bergen, J., Burt, P., Hingorani, R., and Peleg, S. 1992. A three-frame algorithm for estimating two-component image motion. IEEE Trans. Pattern Anal. Mach. Intell. 14, 9, 886--896.
[14]
Birchfield, S. 1998. Elliptical head tracking using intensity gradients and color histograms. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 232--237.
[15]
Birchfield, S. and Rangarajan, S. 2005. Spatiograms vs. histograms for region based tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1158--1163.
[16]
Black, M. and Anandan, P. 1996. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Comput. Vision Image Understand. 63, 75--104.
[17]
Black, M. J. and Jepson, A. D. 1996. Eigentracking: Robust matching and tracking of articulated objects using view-based representation. In Proceedings of the European Conference on Computer Vision. 329--342.
[18]
Bradski, G. 1998. Real time face and object tracking as a component of a perceptual user interface. In Proceedings of the IEEE Workshop on Applications of Computer Vision. 214--219.
[19]
Brand, M. 2002. Incremental singular value decomposition of uncertain data with missing values. In Proceedings of the European Conference on Computer Vision. 707--720.
[20]
Breiman, L. 2001. Random forests. Mach. Learn. 45, 1, 5--32.
[21]
Candamo, J., Shreve, M., Goldgof, D. B., Sapper, D. B., and Kasturi, R. 2010. Understanding transit scenes: A survey on human behavior-recognition algorithms. IEEE Trans. Intell. Transport. Syst. 11, 1, 206--224.
[22]
Cannons, K. 2008. A review of visual tracking. Tech. rep., York University, CSE-2008-07.
[23]
Chin, T. J. and Suter, D. 2007. Incremental kernel principal component analysis. IEEE Trans. Image Process. 16, 6, 1662--1674.
[24]
Coifman, B., Beymer, D., Mclauchlan, P., and Malik, J. 1998. A real-time computer vision system for vehicle tracking and traffic surveillance. Transport. Res. Part C 6, 4, 271--288.
[25]
Collins, R. 2003. Mean-shift blob tracking through scale space. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2. 234--240.
[26]
Collins, R. T., Lipton, A. J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., and Wixson, L. 2000. A system for video surveillance and monitoring. Tech. rep. cmu-ri-tr-00-12, VSAM final report, Carnegie Mellon University, Pittsburg, PA.
[27]
Collins, R. T., Liu, Y., and Leordeanu, M. 2005. Online selection of discriminative tracking features. IEEE Trans. Pattern Analy. Mach. Intell. 27, 10, 1631--1643.
[28]
Comaniciu, D., Ramesh, V., and Meer, P. 2003. Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25, 5, 564--577.
[29]
Cremers, D. 2006. Dynamical statistical shape priors for level set based tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1262--1273.
[30]
Dalal, N. and Triggs, B. 2005. Histograms of oriented gradients for human detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 1. 886--893.
[31]
Donoser, M. and Bischof, H. 2006. Efficient maximally stable extremal region (mser) tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 553--560.
[32]
Ellis, L., Dowson, N., Matas, J., and Bowden, R. 2010. Linear regression and adaptive appearance models for fast simultaneous modelling and tracking. Int. J. Comput. Vision.
[33]
Everingham, M. and Zisserman, A. 2005. Identifying individuals in video by combining ‘generative’ and discriminative head models. In Proceedings of the IEEE International Conference on Computer Vision. 1103--1110.
[34]
Fan, J., Wu, Y., and Dai, S. 2010. Discriminative spatial attention for robust tracking. In Proceedings of the European Conference on Computer Vision. 480--493.
[35]
Fan, J., Yang, M., and Wu, Y. 2008. A bi-subspace model for robust visual tracking. In Proceedings of the International Conference on Image Processing. 2260--2663.
[36]
Forsyth, D. A., Arikan, O., Ikemoto, L., O'Brien, J., and Ramanan, D. 2006. Computational studies of human motion: Part 1, tracking and motion synthesis. Found. Trends Comput. Graph. Vis. 1, 2, 77--254.
[37]
Friedman, J. 2001. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 5, 1189--1232.
[38]
Gall, J., Razavi, N., and Gool, L. V. 2010. On-line adaption of class-specific codebooks for instance tracking. In Proceedings of the British Machine Vision Conference.
[39]
Gelzinis, A., Verikas, A., and Bacauskiene, M. 2007. Increasing the discrimination power of the co-occurrence matrix-based features. Pattern Recog. 40, 9, 2367--2372.
[40]
Georgescu, B. and Meer, P. 2004. Point matching under large image deformations and illumination changes. IEEE Trans. Pattern Anal. Mach. Intell. 26, 674--689.
[41]
Gerónimo, D., López, A. M., Sappa, A. D., and Graf, T. 2010. Survey of pedestrian detection for advanced driver assistance systems. IEEE Trans. Pattern Anal. Mach. Intell. 32, 7, 1239--1258.
[42]
Godec, M., Leistner, C., Saffari, A., and Bischof, H. 2010. On-line random naive bayes for tracking. In Proceedings of the International Conference on Pattern Recognition. 3545--3548.
[43]
Grabner, H. and Bischof, H. 2006. On-line boosting and vision. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 260--267.
[44]
Grabner, H., Grabner, M., and Bischof, H. 2006. Real-time tracking via on-line boosting. In Proceedings of the British Machine Vision Conference. 47--56.
[45]
Grabner, H., Leistner, C., and Bischof, H. 2008. Semi-supervised on-line boosting for robust tracking. In Proceedings of the 10th European Conference on Computer Vision (ECCV'08). Lecture Notes in Computer Science, vol. 5302, Springer, Berlin, 234--247.
[46]
Grabner, H., Roth, P. M., and Bischof, H. 2007. Eigenboosting: Combining discriminative and generative information. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--8.
[47]
Grabner, M., Grabner, H., and Bischof, H. 2007. Learning features for tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--8.
[48]
Hager, G. and Belhumeur, P. 1998. Efficient region tracking with paramteric models of geometry and illumination. IEEE Trans. Pattern Anal. Mach. Intell. 20, 10, 1125--1139.
[49]
Han, B., Comaniciu, D., Zhu, Y., and Davis, L. S. 2008. Sequential kernel density approximation and its application to real-time visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 30, 7, 1186--1197.
[50]
Han, B. and Davis, L. 2005. On-line density-based appearance modeling for object tracking. In Proceedings of the IEEE International Conference on Computer Vision. 1492--1499.
[51]
Haralick, R., Shanmugam, K., and Dinstein, I. 1973. Textural features for image classification. IEEE Trans. Syst. Man Cybernet. 3, 6, 610--621.
[52]
Hare, S., Saffari, A., and Torr, P. 2011. Struck: Structured output tracking with kernels. In Proceedings of the IEEE International Conference on Computer Vision. 263--270.
[53]
Hare, S., Saffari, A., and Torr, P. 2012. Efficient online structured output learning for keypoint-based object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1894--1901.
[54]
Haritaoglu, I. and Flickner, M. 2001. Detection and tracking of shopping groups in stores. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 1. 431--438.
[55]
Haritaoglu, I., Harwood, D., and Davis, L. 2000. W4: Real-time surveillance of people and their activities. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8, 809--830.
[56]
He, C., Zheng, Y., and Ahalt, S. 2002. Object tracking using the gabor wavelet transform and the golden section algorithm. IEEE Trans. Multimed. 4, 4, 528--538.
[57]
He, W., Yamashita, T., Lu, H., and Lao, S. 2009. Surf tracking. In Proceedings of the IEEE International Conference on Computer Vision. 1586--1592.
[58]
Ho, J., Lee, K., Yang, M., and Kriegman, D. 2004. Visual tracking using learned linear subspaces. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 782--789.
[59]
Hong, X., Chang, H., Shan, S., Zhong, B., Chen, X., and Gao, W. 2010. Sigma set based implicit online learning for object tracking. IEEE Signal Process. Lett. 17, 9, 807--810.
[60]
Horn, B. K. P. and Schunck, B. G. 1981. Determining optical flow. Artif. Intell. 17, 185--203.
[61]
Hou, X., Li, S., Zhang, H., and Cheng, Q. 2001. Direct appearance models. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 1. 828--833.
[62]
Hu, W., Li, X., Luo, W., Zhang, X., Maybank, S., and Zhang, Z. 2012. Single and multiple object tracking using log-euclidean riemannian subspace and block-division appearance model. IEEE Trans. Pattern Anal. Mach. Intell.
[63]
Hu, W., Li, X., Zhang, X., Shi, X., Maybank, S., and Zhang, Z. 2010. Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int. J. Comput. Vision 91, 3, 303--327.
[64]
Hu, W., Tan, T., Wang, L., and Maybank, S. 2004. A survey on visual surveillance of object motion and behaviors. IEEE Trans. Syst. Man, Cybern. C, Appl. Rev. 34, 3, 334--352.
[65]
Irani, M. 1999. Multi-frame optical flow estimation using subspace constraints. In Proceedings of the IEEE International Conference on Computer Vision. 626--633.
[66]
Isard, M. and Blake, A. 1998. Condensation-conditional density propagation for tracking. Int. J. Comput. Vision 29, 1, 2--28.
[67]
Javed, O., Shafique, K., Rasheed, Z., and Shah, M. 2008. Modeling inter-camera space--time and appearance relationships for tracking across non-overlapping views. Comput. Vision Image Understand. 109, 2, 146--162.
[68]
Jepson, A. D., Fleet, D. J., and El-Maraghi, T. F. 2003. Robust online appearance models for visual tracking. IEEE Trans. Pattern Analy. Mach. Intell. 25, 10, 1296--1311.
[69]
Jia, X., Lu, H., and Yang, M. 2012. Visual tracking via adaptive structural local sparse appearance model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1822--1829.
[70]
Jiang, N., Liu, W., and Wu, Y. 2012. Order determination and sparsity-regularized metric learning adaptive visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1956--1963.
[71]
Jiang, N., Su, H., Liu, W., and Wu, Y. 2011. Tracking low resolution objects by metric preservation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1329--1336.
[72]
Kalman, R. 1960. A new approach to linear filtering and prediction problems. Trans. ASME--J. Basic Eng. 82, 1, 35--45.
[73]
Kang, W. and Deng, F. 2007. Research on intelligent visual surveillance for public security. In Proceedings of the International Conference on IEEE/ACIS Computer Information Science. 824--829.
[74]
Kelm, B. M., Pal, C., and McCallum, A. 2006. Combining generative and discriminative methods for pixel classification with multi-conditional learning. In Proceedings of the International Conference on Pattern Recognition. 828--832.
[75]
Kim, Z. 2008. Real time object tracking based on dynamic feature grouping with background subtraction. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--8.
[76]
Kwon, J. and Lee, K. M. 2010. Visual tracking decomposition. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1269--1276.
[77]
Lee, K. and Kriegman, D. 2005. Online learning of probabilistic appearance manifolds for video-based recognition and tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 852--859.
[78]
Lei, Y., Ding, X., and Wang, S. 2008. Visual tracker using sequential bayesian learning: Discriminative, generative, and hybrid. IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. 38, 6, 1578--1591.
[79]
Leichter, I., Lindenbaum, M., and Rivlin, E. 2009. Tracking by affine kernel transformations using color and boundary cues. IEEE Trans. Pattern Analy. Mach. Intell. 31, 1, 164--171.
[80]
Leichter, I., Lindenbaum, M., and Rivlin, E. 2010. Mean shift tracking with multiple reference color histograms. Comput. Vision Image Understand. 114, 3, 400--408.
[81]
Leistner, C., Saffari, A., and Bischof, H. 2010. Multiple-instance learning with randomized trees. In Proceedings of the European Conference on Computer Vision. 29--42.
[82]
Leistner, C., Saffari, A., Roth, P. M., and Bischof, H. 2009. On robustness of on-line boosting—a competitive study. In Proceedings of the International Conference on Computer Vision Workshops. 1362--1369.
[83]
Lepetit, V. and Fua, P. 2006. Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28, 9, 1465--1479.
[84]
Levin, A., Viola, P., and Freund, Y. 2007. Unsupervised improvement of visual detectors using cotraining. In Proceedings of the IEEE International Conference on Computer Vision. 626--633.
[85]
Levy, A. and Lindenbaum, M. 2000. Sequential karhunen-loeve basis extraction and its application to images. IEEE Trans. Image Process. 9, 8, 1371--1374.
[86]
Li, G., Huang, Q., Qin, L., and Jiang, S. 2013. Ssocbt: A robust semi-supervised online covboost tracker by using samples differently. IEEE Trans. Circuits Syst. Video Technol.
[87]
Li, G., Liang, D., Huang, Q., Jiang, S., and Gao, W. 2008. Object tracking using incremental 2d-lda learning and bayes inference. In Proceedings of the International Conference on Image Processing. 1568--1571.
[88]
Li, H., Shen, C., and Shi, Q. 2011. Real-time visual tracking with compressed sensing. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.
[89]
Li, M., Kwok, J. T., and Lu, B.-L. 2010. Online multiple instance learning with no regret. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1395--1401.
[90]
Li, M., Zhang, Z., Huang, K., and Tan, T. 2009. Robust visual tracking based on simplified biologically inspired features. In Proceedings of the International Conference on Image Processing. 4113--4116.
[91]
Li, X., Dick, A., Shen, C., van den Hengel, A., and Wang, H. 2013. Incremental learning of 3d-dct compact representations for robust visual tracking. IEEE Trans. Pattern Anal. Mach. Intell.
[92]
Li, X., Hu, W., Zhang, Z., Zhang, X., and Luo, G. 2007. Robust visual tracking based on incremental tensor subspace learning. In Proceedings of the IEEE International Conference on Computer Vision. 1--8.
[93]
Li, X., Hu, W., Zhang, Z., Zhang, X., Zhu, M., and Cheng, J. 2008. Visual tracking via incremental log-euclidean riemannian subspace learning. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--8.
[94]
Li, X., Shen, C., Shi, Q., Dick, A., and van den Hengel, A. 2012. Non-sparse linear representations for visual tracking with online reservoir metric learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1760--1767.
[95]
Li, Y., Xu, L., Morphett, J., and Jacobs, R. 2004. On incremental and robust subspace learning. Pattern Recog. 37, 7, 1509--1518.
[96]
Lim, H., Morariu, V. I., Camps, O. I., and Sznaier, M. 2006. Dynamic appearance modeling for human tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 751--757.
[97]
Lin, R., Ross, D., Lim, J., and Yang, M.-H. 2004. Adaptive discriminative generative model and its applications. IEEE International Conference on Computer Vision and Pattern Recognition. 801--808.
[98]
Lin, R.-S., Yang, M.-H., and Levinson, S. E. 2004. Object tracking using incremental fisher discriminant analysis. In Proceedings of the International Conference on Pattern Recognition. 757--760.
[99]
Lin, Z., Davis, L., Doermann, D., and DeMenthon, D. 2007. Hierarchical part-template matching for human detection and segmentation. In Proceedings of the IEEE International Conference on Computer Vision. 1--8.
[100]
Liu, R., Cheng, J., and Lu, H. 2009. A robust boosting tracker with minimum error bound in a co-training framework. In Proceedings of the IEEE International Conference on Computer Vision. 1459--1466.
[101]
Liu, X. and Yu, T. 2007. Gradient feature selection for online boosting. In Proceedings of the IEEE International Conference on Computer Vision. 1--8.
[102]
Lu, H., Zhang, W., and Chen, Y. 2010. On feature combination and multiple kernel learning for object tracking. In Proceedings of the Asian Conference on Computer Vision.
[103]
Lucas, B. D. and Kanade, T. 1981. An iterative image registration technique with an application in stereo vision. In Proceedings of the International Joint Conferences on Artificial Intelligence. 674--679.
[104]
Luo, W., Li, X., Li, W., and Hu, W. 2011. Robust visual tracking via transfer learning. In Proceedings of the IEEE International Conference on Image Processing. 485--488.
[105]
Mahadevan, V. and Vasconcelos, N. 2009. Saliency-based discriminant tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1007--1013.
[106]
Mason, L., Baxter, J., Bartlett, P., and Frean, M. 1999. Functional gradient techniques for combining hypotheses. In Advance in Large Margin Classifiers, A. J. Simola, P. L. Burtlett, B. Schölkopf, and D. Schuurmans, Eds., MIT Press, Cambridge, MA, 221--247.
[107]
Masoud, O. and Papanikolopoulos, N. P. 2001. A novel method for tracking and counting pedestrians in real-time using a single camera. IEEE Trans. Vehicul. Technol. 50, 5, 1267--1278.
[108]
Matthews, I. and Baker, S. 2004. Active appearance models revisited. Int. J. Comput. Vision 60, 2, 135--164.
[109]
McKenna, S., Raja, Y., and Gong, S. 1999. Tracking colour objects using adaptive mixture models. Image Vision Comput. 17, 223--229.
[110]
Mei, X. and Ling, H. 2009. Robust visual tracking using ℓ1 minimization. In Proceedings of the IEEE International Conference on Computer Vision. 1436--1443.
[111]
Mei, X., Ling, H., Wu, Y., Blasch, E., and Bai, L. 2011. Minimum error bounded efficient l1 tracker with occlusion detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1257--1264.
[112]
Neal, R. 2001. Annealed importance sampling. Stat. Comput. 11, 2, 125--139.
[113]
Nejhum, S. M. S., Ho, J., and Yang, M. H. 2010. Online visual tracking with histograms and articulating blocks. Comput. Vision Image Understand.
[114]
Nguyen, H. T. and Smeulders, A. W. M. 2004. Tracking aspects of the foreground against the background. In Proceedings of the European Conference on Computer Vision. 446--456.
[115]
Nguyen, H. T. and Smeulders, A. W. M. 2006. Robust tracking using foreground-background texture discrimination. Int. J. Comput. Vision 69, 3, 277--293.
[116]
Nguyen, Q. A., Robles-Kelly, A., and Shen, C. 2007. Kernel-based tracking from a probabilistic viewpoint. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--8.
[117]
Ning, J., Zhang, L., Zhang, D., and Wu, C. 2009. Robust object tracking using joint color-texture histogram. Int. J. Pattern Recog. Artif. Intell. 23, 7, 1245--1263.
[118]
Ojala, T., Pietikäinen, M., and Mäenpää, T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 7, 971--987.
[119]
Okuma, K., Taleghani, A., Freitas, N. D., Little, J. J., and Lowe, D. 2004. A boosted particle filter: Multitarget detection and tracking. In Proceedings of the European Conference on Computer Vision. 28--39.
[120]
Oza, N. and Russell, S. 2001. Online bagging and boosting. Artif. Intell. Stat. 105--112.
[121]
Özuysal, M., Calonder, M., Lepetit, V., and Fua, P. 2009. Fast keypoint recognition using random ferns. IEEE Trans. Pattern Anal. Mach. Intell. 32, 3, 448--461.
[122]
Palmer, S. E. 1999. Vision Science: Photons to Phenomenology. The MIT Press, Cambridge, MA.
[123]
Parag, T., Porikli, F., and Elgammal, A. 2008. Boosting adaptive linear weak classifiers for online learning and tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.
[124]
Paragios, N. and Deriche, R. 2000. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22, 266--280.
[125]
Paschalakis, S. and Bober, M. 2004. Real-time face detection and tracking for mobile videoconferencing. Real-Time Imaging 10, 2, 81--94.
[126]
Pavlovie, V. I., Sharma, R., and Huang, T. 1997. Visual interpretation of hand gestures for human-computer interaction: A review. IEEE Trans. Pattern Anal. Mach. Intell. 19, 7, 677--695.
[127]
Porikli, F. 2005. Integral histogram: A fast way to extract histograms in cartesian spaces. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 1. 829--836.
[128]
Porikli, F., Tuzel, O., and Meer, P. 2006. Covariance tracking using model update based on lie algebra. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 728--735.
[129]
Ren, X. and Malik, J. 2007. Tracking as repeated figure/ground segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1--8.
[130]
Ross, D., Lim, J., Lin, R., and Yang, M. 2008. Incremental learning for robust visual tracking. Int. J. Comput. Vision 77, 1-3, 125--141.
[131]
Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. 2009. On-line random forests. In Proceedings of the IEEE International Conference on Computer Vision Workshops. 1393--1400.
[132]
Salari, V. and Sethi, I. K. 1990. Feature point correspondence in the presence of occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 1, 87--91.
[133]
Santner, J., Leistner, C., Saffari, A., Pock, T., and Bischof, H. 2010. Prost: Parallel robust online simple tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 723--730.
[134]
Sawhney, H. and Ayer, S. 1996. Compact representations of videos through dominant and multiple motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 814--830.
[135]
Sclaroff, S. and Isidoro, J. 2003. Active blobs: Region-based, deformable appearance models. Comput. Vision Image Understand. 89, 2, 197--225.
[136]
Sethi, I. K. and Jain, R. 1987. Finding trajectories of feature points in monocular image sequence. IEEE Trans. Pattern Anal. Mach. Intell. 9, 1, 56--73.
[137]
Sharp, T. 2008. Implementing decision trees and forests on a gpu. In Proceedings of the European Conference on Computer Vision. 595--608.
[138]
Shen, C., Brooks, M. J., and van den Hengel, A. 2007. Fast global kernel density mode seeking: Applications to localization and tracking. IEEE Trans. Image Process. 16, 5, 1457--1469.
[139]
Shen, C., Kim, J., and Wang, H. 2010. Generalized kernel-based visual tracking. IEEE Trans. Circuits Syst. Video Technol. 20, 1, 119--130.
[140]
Shotton, J., Johnson, M., and Cipolla, R. 2008. Semantic texton forests for image categorization and segmentation. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--8.
[141]
Sikora, T. 1997. The mpeg-4 video standard verification model. IEEE Trans. Circuits Syst. Video Technol. 7, 1, 19--31.
[142]
Silveira, G. and Malis, E. 2007. Real-time visual tracking under arbitrary illumination changes. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--6.
[143]
Sivic, J., Schaffalitzky, F., and Zisserman, A. 2006. Object level grouping for video shots. Int. J.Comput. Vision 67, 2, 189--210.
[144]
Skocaj, D. and Leonardis, A. 2003. Weighted and robust incremental method for subspace learning. Pattern Recog. 40, 5, 1556--1569.
[145]
Stauffer, C. and Grimson, W. 2000. Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22, 8, 747--757.
[146]
Sun, X., Yao, H., and Zhang, S. 2011. A novel supervised level set method for non-rigid object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3393--3400.
[147]
Sun, Z., Bebis, G., and Miller, R. 2006. On-road vehicle detection: A review. IEEE Trans. Pattern Anal. Mach. Intell. 28, 5, 694--711.
[148]
Tai, J., Tsang, S., Lin, C., and Song, K. 2004. Real-time image tracking for automatic traffic monitoring and enforcement application. Image Vision Comput. 22, 6, 485--501.
[149]
Tang, F., Brennan, S., Zhao, Q., and Tao, H. 2007. Co-tracking using semi-supervised support vector machines. In Proceedings of the IEEE 11th International Conference on Computer Vision. 1--8.
[150]
Tang, F. and Tao, H. 2008. Probabilistic object tracking with dynamic attributed relational feature graph. IEEE Trans. Circuits Syst. Video Technol. 18, 8, 1064--1074.
[151]
Tian, M., Zhang, W., and Liu, F. 2007. On-line ensemble svm for robust object tracking. In Proceedings of the Asian Conference on Computer Vision. 355--364.
[152]
Toyama, K. and Hager, G. D. 1996. Incremental focus of attention for robust visual tracking. Int. J. Comput. Vision.
[153]
Tran, S. and Davis, L. 2007. Robust object tracking with regional affine invariant features. In Proceedings of the IEEE International Conference on Computer Vision. 1--8.
[154]
Tuzel, O., Porikli, F., and Meer, P. 2006. Region covariance: A fast descriptor for detection and classification. In Proceedings of the European Conference on Computer Vision. 589--600.
[155]
Ulusoy, I. and Bishop, C. 2005. Generative versus discriminative methods for object recognition. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 258--265.
[156]
Vaswani, N., Rathi, Y., Yezzi, A., and Tannenbaum, A. 2008. Pf-mt with an interpolation effective basis for tracking local contour deformations. IEEE Trans. Image Process. 19, 4, 841--857.
[157]
Viola, P. and Jones, M. 2002. Robust real-time object detection. Int. J. Comput. Vision 57, 2, 137--154.
[158]
Visentini, I., Snidaro, L., and Foresti, G. L. 2008. Dynamic ensemble for target tracking. In Proceedings of the International Workshop on Visual Surveillance.
[159]
Wang, H., Suter, D., Schindler, K., and Shen, C. 2007. Adaptive object tracking based on an effective appearance filter. IEEE Trans. Pattern Anal. Mach. Intell. 29, 9, 1661--1667.
[160]
Wang, J., Chen, X., and Gao, W. 2005. Online selecting discriminative tracking features using particle filter. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition 2. 1037--1042.
[161]
Wang, J. and Yagi, Y. 2008. Integrating color and shape-texture features for adaptive real-time object tracking. IEEE Trans. Image Process. 17, 2, 235--240.
[162]
Wang, Q., Chen, F., Xu, W., and Yang, M. 2012. Object tracking via partial least squares analysis. IEEE Trans. Image Process. 21, 10, 4454--4465.
[163]
Wang, S., Lu, H., Yang, F., and Yang, M. 2011. Superpixel tracking. In Proceedings of the IEEE International Conference on Computer Vision.
[164]
Wang, T., Gu, I. Y. H., and Shi, P. 2007. Object tracking using incremental 2d-pca learning and ml estimation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 933--936.
[165]
Wang, X., Hua, G., and Han, T. 2010. Discriminative tracking by metric learning. In Proceedings of the European Conference on Computer Vision. 200--214.
[166]
Wen, J., Gao, X., Li, X., and Tao, D. 2009. Incremental learning of weighted tensor subspace for visual tracking. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. 3788--3793.
[167]
Wen, L., Cai, Z., Lei, Z., Yi, D., and Li, S. 2012. Online spatio-temporal structural context learning for visual tracking. In Proceedings of the European Conference on Computer Vision. 716--729.
[168]
Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., and Bischof, H. 2009. Anisotropic huber-l1 optical flow. In Proceedings of the British Machine Vision Conference.
[169]
Williams, O., Blake, A., and Cipolla, R. 2005. Sparse bayesian learning for efficient visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1292--1304.
[170]
Wolfe, J. M. 1994. Guided search 2.0: A revised model of visual search. Psychonomic Bull. Rev. 1, 2, 202--238.
[171]
Wu, S., Zhu, Y., and Zhang, Q. 2012. A new robust visual tracking algorithm based on transfer adaptive boosting. Math. Methods Appl. Sci. 35, 17, 2133--2140.
[172]
Wu, Y., Cheng, J., Wang, J., and Lu, H. 2009. Real-time visual tracking via incremental covariance tensor learning. In Proceedings of the IEEE International Conference on Computer Vision. 1631--1638.
[173]
Wu, Y., Cheng, J., Wang, J., Lu, H., Wang, J., Ling, H., Blasch, E., and Bai, L. 2012. Real-time probabilistic covariance tracking with efficient model update. IEEE Trans. Image Process. 21, 5, 2824--2837.
[174]
Wu, Y. and Fan, J. 2009. Contextual flow. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 33--40.
[175]
Wu, Y., Wu, B., Liu, J., and Lu, H. 2008. Probabilistic tracking on riemannian manifolds. In Proceedings of the International Conference on Pattern Recognition. 1--4.
[176]
Xu, Z., Shi, P., and Xu, X. 2008. Adaptive subclass discriminant analysis color space learning for visual tracking. In Proceedings of the 9th Pacific Rim Conference on Multimedia: Advances in Multimedia Information Processing. 902--905.
[177]
Yang, C., Duraiswami, R., and Davis, L. 2005. Efficient mean-shift tracking via a new similarity measure. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 176--183.
[178]
Yang, F., Lu, H., and Chen, Y. 2010a. Bag of features tracking. In Proceedings of the International Conference on Pattern Recognition.
[179]
Yang, F., Lu, H., and Chen, Y. 2010b. Robust tracking based on boosted color soft segmentation and ica-r. In Proceedings of the International Conference on Image Processing.
[180]
Yang, F., Lu, H., and wei Chen, Y. 2010. Human tracking by multiple kernel boosting with locality affinity constraints. In Proceedings of the Asian Conference on Computer Vision.
[181]
Yang, M., Fan, Z., Fan, J., and Wu, Y. 2009. Tracking nonstationary visual appearances by data-driven adaptation. IEEE Trans. Image Process. 18, 7, 1633--1644.
[182]
Yang, M., Yuan, J., and Wu, Y. 2007. Spatial selection for attentional visual tracking. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--7.
[183]
Yao, R., Shi, Q., Shen, C., Zhang, Y., and van den Hengel, A. 2012. Robust tracking with weighted online structured learning. In Proceedings of the European Conference on Computer Vision.
[184]
Yilmaz, A. 2007. Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1--6.
[185]
Yilmaz, A., Javed, O., and Shah, M. 2006. Object tracking: A survey. ACM Comput. Surv. 38, 4, 1--45.
[186]
Yu, Q., Dinh, T. B., and Medioni, G. 2008. Online tracking and reacquisition using co-trained generative and discriminative trackers. In Proceedings of the European Conference on Computer Vision. 678--691.
[187]
Yu, T. and Wu, Y. 2006. Differential tracking based on spatial-appearance model(sam). In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 720--727.
[188]
Zeisl, B., Leistner, C., Saffari, A., and Bischof, H. 2010. On-line semi-supervised multiple-instance boosting. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. 1879--1886.
[189]
Zha, Y., Yang, Y., and Bi, D. 2010. Graph-based transductive learning for robust visual tracking. Pattern Recog. 43, 187--196.
[190]
Zhan, B., Monekosso, N. D., Remagnino, P., Velastin, S. A., and Xu, L.-Q. 2008. Crowd analysis: A survey. Mach. Vis. Appl. 19, 5, 345--357.
[191]
Zhang, K. and Song, H. 2012. Real-time visual tracking via online weighted multiple instance learning. Pattern Recog.
[192]
Zhang, K., Zhang, L., and Yang, M. 2012. Real-time compressive tracking. In Proceedings of the European Conference on Computer Vision.
[193]
Zhang, T., Ghanem, B., Liu, S., and Ahuja, N. 2012. Robust visual tracking via multi-task sparse learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2042--2049.
[194]
Zhang, X., Hu, W., Maybank, S., and Li, X. 2007. Graph-based discriminative learning for robust and efficient object tracking. In Proceedings of the IEEE International Conference on Computer Vision. 1--8.
[195]
Zhao, Q., Yang, Z., and Tao, H. 2010. Differential earth mover's distance with its applications to visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2, 274--287.
[196]
Zhong, W., Lu, H., and Yang, M. 2012. Robust object tracking via sparsity-based collaborative model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1838--1845.
[197]
Zhou, H., Yuan, Y., and Shi, C. 2009. Object tracking using sift features and mean shift. Comput. Vision Image Understand. 345--352.
[198]
Zhou, S. K., Chellappa, R., and Moghaddam, B. 2004. Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans. Image Process. 13, 1491--1506.
[199]
Zhu, M. and Martinez, A. M. 2006. Subclass discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1274--1286.
[200]
Zhu, X. 2005. Semi-supervised learning literature survey. Tech. rep. Computer Sciences, University of Wisconsin-Madison.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology  Volume 4, Issue 4
Survey papers, special sections on the semantic adaptive social web, intelligent systems for health informatics, regular papers
September 2013
452 pages
ISSN:2157-6904
EISSN:2157-6912
DOI:10.1145/2508037
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 October 2013
Accepted: 01 March 2013
Revised: 01 February 2013
Received: 01 November 2012
Published in TIST Volume 4, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Visual object tracking
  2. appearance model
  3. features
  4. statistical modeling

Qualifiers

  • Research-article
  • Survey
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)125
  • Downloads (Last 6 weeks)16
Reflects downloads up to 06 Nov 2024

Other Metrics

Citations

Cited By

View all

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media