skip to main content
10.1145/2335755.2335821acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Monte Carlo strategies for first-principles simulations of elemental systems

Published: 16 July 2012 Publication History

Abstract

We discuss the application of atomistic Monte Carlo simulation based on electronic structure calculations to elemental systems such as metals and alloys. As in prior work in this area, an approximate "pre-sampling" potential is used to generate large moves with a high probability of acceptance. Even with such a scheme, however, such simulations are extremely expensive and may benefit from algorithmic developments that improve acceptance rates and/or enable additional parallelization.
Here we consider several such developments. The first of these is a three-level hybrid algorithm in which two pre-sampling potentials are used. The lowest level is an empirical potential, and the "middle" level uses a low-quality density functional theory. The efficiency of the multistage algorithm is analyzed and an example application is given.
Two other schemes for reducing overall run-time are also considered. In the first, the Multiple-try Monte Carlo algorithm, a series of moves are attempted in parallel, with the choice of the next state in the chain made by using all the information gathered. This is found to be a poor choice for simulations of this type. In the second scheme, "tree sampling," multiple trial moves are made in parallel such that if the first is rejected, the second is ready and can be considered immediately. Performance of this scheme is shown to be quite effective under certain reasonable run parameters.

References

[1]
D. Frenkel and B. Smit. Understanding Molecular Simulation. Acad. Press., San Diego, 1996.
[2]
A. D. Sokal. Monte Carlo methods for the self-avoiding walk. In K. Binder, editor, Monte Carlo and Molecular Dynamics Simulations in Polymer Science, pages 47--124. Oxford U. Press., New York, 1995.
[3]
R. H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Letts., 58:86--88, 1987.
[4]
T. Schlick. Molecular modeling and simulation: an interdisciplinary guide. Springer-Verlag, New York, 2002.
[5]
C. J. Cramer. Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons, Chichester, UK, 2002.
[6]
F. Jensen. Introduction to Computational Chemistry. John Wiley & Sons, Ltd., Chichester, UK, 2nd edition, 2007.
[7]
R. M. Martin. Electronic structure: basic theory and practical methods. Cambridge U. Press, Cambridge, UK, 2004.
[8]
R. Dronskowski. Computational Chemistry of Solid State Materials. Wiley-VCH Verlag GmbH & Co., Weinheim, 2005.
[9]
D. S. Sholl and J. A. Steckel. Density Functional Theory: A Practical Introduction. Wiley, Hoboken, NJ, 2009.
[10]
A. P. Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N. Vorontsov-Velyaminov. New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles. J. Chem. Phys., 96(3):1776--1783, 1992.
[11]
U. H. E. Hansmann. Parallel tempering for conformational studies of biological molecules. Chem. Phys. Letts., 281(1-3):140--150, 1997.
[12]
Q. Yan and J. J. de Pablo. Hyper-parallel tempering Monte Carlo: Application to the Lennard-Jones fluid and the restricted primitive model. J. Chem. Phys., 111(21):9509--9516, 1999.
[13]
R. H. Swendsen, B. Diggs, J.-S. Wang, S.-T. Li, C. Genovese, and J. B. Kadane. Transition matrix Monte Carlo. Int. J. Mod. Phys. C, 10:1563--1569, 1999.
[14]
Y. Sugita, A. Kitao, and Y. Okamoto. Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys., 113(15):6041--6051, 2000.
[15]
T. Rodinger, P. L. Howell, and R. Pomès. Distributed replica sampling. J. Chem. Theory. Comput., 2:725--731, 2006.
[16]
J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc., 93(443):1032--1044, 1998.
[17]
J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, New York, 2001.
[18]
R. Iftimie, D. Salahub, D. Wei, and J. Schofield. Using a classical potential as an efficient importance function for sampling from an ab initio potential. J. Chem. Phys., 113(12):4852--4862, 2000.
[19]
R. Iftimie and J. Schofield. Reaction mechanism and isotope effects derived from centroid transition state theory in intramolecular proton transfer reactions. J. Chem. Phys., 115(13):5891--5902, 2001.
[20]
R. Iftimie, D. Salahub, and J. Schofield. An efficient Monte Carlo method for calculating ab initio transition state theory reaction rates in solution. J. Chem. Phys., 119(21):11285--11297, 2003.
[21]
B. Hetényi, K. Bernacki, and B. J. Berne. Multiple "time step" Monte Carlo. J. Chem. Phys., 117(18):8203--8207, 2002.
[22]
L. D. Gelb. Monte Carlo simulations using sampling from an approximate potential. J. Chem. Phys., 118(17):7747--7750, 2003.
[23]
T. Z. Lwin and R. Luo. Overcoming entropic barrier with coupled sampling at dual resolutions. J. Chem. Phys., 123:194904, 2005.
[24]
C. H. Mak. Stochastic potential switching algorithm for Monte Carlo simulations of complex systems. J. Chem. Phys., 122:214110, 2005.
[25]
S. Wang, S. J. Mitchell, and P. A. Rikvold. Ab initio Monte Carlo simulations for finite-temperature properties: application to lithium clusters and bulk liquid lithium. Comp. Mater. Sci., 29:145--151, 2004.
[26]
L. D. Gelb and T. Carnahan. Isothermal-isobaric Monte Carlo simulations of liquid lithium using density functional theory. Chem. Phys. Letts., 417:283--287, 2006.
[27]
M. J. McGrath, J. I. Siepmann, I-F. W. Kuo, C. J. Mundy, J. VandeVondele, M. Sprik, J. Hutter, F. Mohamed, M. Krack, and M. Parrinello. Toward a Monte Carlo program for simulating vapor-liquid equilibria from first principles. Comp. Phys. Comm., 169:289--294, 2005.
[28]
M. J. McGrath, I.-F. W. Kuo, and J. I. Siepmann. Liquid structures of water, methanol, and hydrogen fluoride at ambient conditions from first principles molecular dynamics simulations with a dispersion corrected density functional. Phys. Chem. Chem. Phys., 13:19943--19950, 2011.
[29]
S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Phys. Lett. B, 195(2):216--222, 1987.
[30]
B. Mehlig, D. W. Heermann, and B. M. Forrest. Hybrid Monte Carlo method for condensed-matter systems. Phys. Rev. B, 45(2):679--685, 1992.
[31]
V. Weber and D. Asthagiri. Thermodynamics of water modeled using ab initio simulations. J. Chem. Phys., 133:141101, 2010.
[32]
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. J. Chem. Phys., 21:1087--1092, 1953.
[33]
M. E. Clamp, P. G. Baker, C. J. Stirling, and A. Brass. Hybrid Monte Carlo: An efficient algorithm for condensed matter simulation. J. Comp. Chem., 15(8):838--846, 1994.
[34]
B. Chen and J. I. Siepmann. A novel Monte Carlo algorithm for simulating strongly associating fluids: Applications to water, hydrogen fluoride, and acetic acid. J. Phys. Chem. B, 104:8725--8734, 2000.
[35]
B. Chen and J. I. Siepmann. Improving the efficiency of the aggregation-volume-bias Monte Carlo algorithm. J. Phys. Chem. B, 105:11275--11282, 2001.
[36]
A. M. Ferrenberg and R. H. Swendsen. New Monte Carlo technique for studying phase transitions. Phys. Rev. Lett., 61(23):2635--2638, 1988.
[37]
G. Orkoulas and A. Z. Panagiotopoulos. Phase behavior of the restricted primitive model and square-well fluids from Monte Carlo simulations in the grand canonical ensemble. J. Chem. Phys., 110:1581--1590, 1999.
[38]
M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, and W. A. de Jong. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comp. Phys. Comm., 181:1477--1489, 2010.
[39]
G. van Rossum. http://www.python.org.
[40]
http://pympi.sourceforge.net.
[41]
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. Cambridge University Press, Cambridge, 2 edition, 1988.
[42]
S.-N. Luo, T. J. Ahrens, T. Çağin, A. Strachan, W. A. Goddard III, and D. C. Swift. Maximum superheating and undercooling: Systematics, molecular dynamics simulations, and dynamic experiments. Phys. Rev. B, 68:134206, 2003.
[43]
M. S. Daw, S. M. Foiles, and M. I. Baskes. The Embedded-Atom Method - a review of theory and applications. Mat. Sci. Rep., 9(7-8):251--310, 1993.
[44]
A. P. Sutton and J. Chen. Long-range Finnis-Sinclair potentials. Phil. Mag. Letts., 61(3):139--146, 1990.
[45]
H. Rafii-Tabar and A. P. Sutton. Long-range Finnis-Sinclair potentials for f. c. c. metallic alloys. Phil. Mag. Letts., 63:217--224, 1991.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
XSEDE '12: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond
July 2012
423 pages
ISBN:9781450316026
DOI:10.1145/2335755
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 July 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Monte Carlo
  2. materials science
  3. molecular modeling
  4. statistical mechanics
  5. thermodynamics

Qualifiers

  • Research-article

Funding Sources

Conference

XSEDE12

Acceptance Rates

Overall Acceptance Rate 129 of 190 submissions, 68%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 97
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Sep 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media