skip to main content
10.1145/2089016.2089029acmconferencesArticle/Chapter ViewAbstractPublication PagesaintecConference Proceedingsconference-collections
research-article

Protocol design for quantum repeater networks

Published: 09 November 2011 Publication History

Abstract

When built, quantum repeater networks will require classical network protocols to control the quantum operations. However, existing work on repeaters has focused on the quantum operations themselves, with less attention paid to the contents, semantics, ordering and reliability of the classical control messages. In this paper we define and describe our implementation of the classical control protocols. The state machines and packet sequences for the three protocol layers are presented, and operation confirmed by running the protocols over simulations of the physical network. We also show that proper management of the resources in a bottleneck link allows the aggregate throughput of two end-to-end flows to substantially exceed that of a single flow. Our layered architectural framework will support independent evolution of the separate protocol layers.

References

[1]
L. Aparicio and R. Van Meter. Multiplexing schemes for quantum repeater networks. In Proceedings SPIE, volume 8163, page 816308, August 2011.
[2]
M. Ben-Or and A. Hassidim. Fast quantum Byzantine agreement. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 481--485. ACM, 2005.
[3]
H. Buhrman and H. Röhrig. Mathematical Foundations of Computer Science 2003, chapter Distributed Quantum Computing, pages 1--20. Springer-Verlag, 2003.
[4]
L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin. Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A, 72(5):052330, Nov 2005.
[5]
C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and H. J. Kimble. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature, 438:828--832, Dec 2005.
[6]
I. L. Chuang. Quantum algorithm for distributed clock synchronization. Phys. Rev. Lett., 85(9):2006--2009, Aug 2000.
[7]
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 78(16):3221--3224, Apr 1997.
[8]
E. D'Hondt. Distributed quantum computation: A measurement-based approach. PhD thesis, Vrije Universiteit Brussel, July 2005.
[9]
L. Duan, M. Lukin, J. Cirac, and P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414:413--418, 2001.
[10]
L.-M. Duan and H. J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 92(12):127902, Mar 2004.
[11]
W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller. Quantum repeaters based on entanglement purification. Phys. Rev. A, 59(1):169--181, Jan 1999.
[12]
C. Elliott, D. Pearson, and G. Troxel. Quantum cryptography in practice. In Proc. SIGCOMM 2003. ACM, ACM, Aug. 2003.
[13]
A. G. Fowler, D. S. Wang, C. D. Hill, T. D. Ladd, R. Van Meter, and L. C. L. Hollenberg. Surface code quantum communication. Phys. Rev. Lett., 104(18):180503, May 2010.
[14]
N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74(1):145--195, Mar 2002.
[15]
D. Gottesman, T. Jennewein, and S. Croke. Longer-baseline telescopes using quantum repeaters. Arxiv preprint arXiv:1107.2939, 2011.
[16]
L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin. Quantum repeater with encoding. Phys. Rev. A, 79(3):032325, Mar 2009.
[17]
R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams. Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett., 85(9):2010--2013, Aug 2000.
[18]
W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto. From quantum multiplexing to high-performance quantum networking. Nature Photonics, 2010.
[19]
P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett., 96(24):240501, Jun 2006.
[20]
R. Van Meter, T. D. Ladd, W. J. Munro, and K. Nemoto. System design for a long-line quantum repeater. IEEE/ACM Trans. Netw., 17(3):1002--1013, 2009.

Cited By

View all

Index Terms

  1. Protocol design for quantum repeater networks

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      AINTEC '11: Proceedings of the 7th Asian Internet Engineering Conference
      November 2011
      174 pages
      ISBN:9781450310628
      DOI:10.1145/2089016
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 09 November 2011

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. quantum communication
      2. quantum networks
      3. quantum repeater

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      AINTEC '11
      Sponsor:
      AINTEC '11: Asian Internet Engineering Conference
      November 9 - 11, 2011
      Bangkok, Thailand

      Acceptance Rates

      Overall Acceptance Rate 15 of 38 submissions, 39%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)19
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media