skip to main content
article
Free access

Machine models and linear time complexity

Published: 01 October 1993 Publication History
First page of PDF

References

[1]
[1] A. Adachi and S. Iwata. Some combinatorial game problems require ¿(nk) time. J. ACM, 31: 361-376, 1984.
[2]
[2] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchical memory. In Proc. 19th STOC, pages 305-314, 1987.
[3]
[3] A. Aggarwal, A. Chandra, and M. Snir. Hierarchical memory with block transfer. In Proc. 28th FOCS, pages 204-216, 1987.
[4]
[4] D. Angluin and L. Valiant. Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comp. Sys. Sci., 18: 155-193, 1979.
[5]
[5] D. M. Barrington and H. Straubing. Superlinear lower bounds for bounded-width branching programs. In Proc. 6th Structures, pages 305-313, 1991.
[6]
[6] P. Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J. Comp., 20: 270-277, 1991.
[7]
[7] J. Buss and J. Goldsmith. Nondeterminism within P. SIAM J. Comp., 22: 560-572, 1993.
[8]
[8] J. Chang, O. Ibarra, and A. Vergis. On the power of one-way communication. J. ACM, 35: 697-726, 1988.
[9]
[9] S. Cook and R. Reckhow. Time bounded random access machines. J. Comp. Sys. Sci., 7: 354-375, 1973.
[10]
[10] C. Damm and C. Meinel. Separating complexity classes related to ¿-decision trees. Theor. Comp. Sci., 106: 351-360, 1992.
[11]
[11] M. Dietzfelbinger, W. Maass, and G. Schnitger. The complexity of matrix transposition on one-tape off-line Turing machines, Theor. Comp. Sci., 82: 113-129, 1991.
[12]
[12] P. Duris, Z. Galil, W. Paul, and R. Reischuk. Two nonlinear lower bounds for on-line computations. Info. Control, 60: 1-11, 1984.
[13]
[13] Y. Feldman and E. Shapiro. Spatial machines: A more-realistic approach to parallel computation. Comm. ACM, 35: 60-73, October 1992.
[14]
[14] M. Fischer and M. Paterson. String matching and other products. In R. Karp, editor, Complexity of Computation, volume 7 of SIAM-AMS Proceedings, pages 113-125. Amer. Math. Soc., 1974.
[15]
[15] P. Fischer, A. Meyer, and A. Rosenberg. Real-time simulations of multihead tape units. J. ACM, 19: 590-607, 1972.
[16]
[16] M. Fürer. Data structures for distributed counting. J. Comp. Sys. Sci., 29: 231-243, 1984.
[17]
[17] Z. Galil and J. Seiferas. Time-space optimal string matching. J. Comp. Sys. Sci., 26: 280-294, 1983.
[18]
[18] E. Grandjean. A nontrivial lower bound for an NP problem on automata. SIAM J. Comp., 19: 438-451, 1990.
[19]
[19] E. Grandjean and J. Robson. RAM with compact memory: a robust and realistic model of computation. In CSL '90: Proceedings of the 4th Annual Workshop in Computer Science Logic, LNCS. Springer-Verlag, 1991.
[20]
[20] Y. Gurevich and S. Shelah. Nondeterministic linear-time tasks may require substantially nonlinear deterministic time in the case of sublinear work space. In Proc. 20th STOC, pages 281-289, 1988.
[21]
[21] Y. Gurevich and S. Shelah. Nearly-linear time. In Proceedings, Logic at Botik '89, volume 363 of LNCS, pages 108-118. Springer-Verlag, 1989.
[22]
[22] J. Hartmanis and J. Simon. On the power of multiplication in random-access machines. In Proc. 15th Annual IEEE Symposium on Switching and Automata Theory (now FOCS), pages 13-23, 1974.
[23]
[23] F. Hennie and R. Stearns. Two-way simulation of multitape Turing machines. J. ACM, 13: 533-546, 1966.
[24]
[24] J. Hopcroft, W. Paul, and L. Valiant. On time versus space and related problems. In Proc. 16th FOCS, pages 57-64, 1975.
[25]
[25] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation . Addison-Wesley, Reading, MA, 1979.
[26]
[26] T. Jiang and M. Li. K one-way heads cannot do string-matching. In Proc. 25th STOC, pages 62-70, 1993.
[27]
[27] N. Jones. Constant factors do matter. In Proc. 25th STOC, pages 602-611, 1993.
[28]
[28] M. Karchmer, Two time-space tradeoffs for element distinctness. Theor. Comp. Sci., 47: 237-246, 1986.
[29]
[29] J. Katajainen, J. van Leeuwen, and M. Penttonen. Fast simulation of Turing machines by random access machines. SIAM J. Comp., 17: 77-88, 1988.
[30]
[30] R. Kosaraju. Real-time simulation of concatenable double-ended queues by double-ended queues. In Proc. 11th STOC, pages 346-351, 1979.
[31]
[31] M. Krause, C. Meinel, and S. Waack. Separating complexity classes related to certain input-oblivious logarithmic space-bounded Turing machines. In Proc. 4th Structures, pages 240-249, 1989.
[32]
[32] M. Krause and S. Waack. On oblivious branching programs of linear length. Info. Comp., 94: 232-249, 1991.
[33]
[33] B. Leong and J. Seiferas. New real-time simulations of multihead tape units. J. ACM, 28: 166-180, 1981.
[34]
[34] M. Li, L. Longpré, and P. Vitányi. The power of the queue. SIAM J. Comp., 21: 697-712, 1992.
[35]
[35] M. Li and P. Vitányi. Tape versus queue and stacks: the lower bounds. Info. Comp., 78: 56-85, 1988.
[36]
[36] M. Loui. Optimal dynamic embedding of trees into arrays. SIAM J. Comp., 12: 463-472, 1983.
[37]
[37] M. Loui and D. Luginbuhl. The complexity of on-line simulation between multidimensional Turing machines and random-access machines. Math. Sys. Thy., 25: 293-308, 1992.
[38]
[38] M. Loui and D. Luginbuhl. Optimal on-line simulations of tree machines by random access machines, SIAM J. Comp., 21: 959-971, 1992.
[39]
[39] W. Maass and G. Schnitger. An optimal lower bound for Turing machines with one work tape and a two-way input tape. In Proc. 1st Annual Conference on Structure in Complexity Theory, volume 223 of LNCS, pages 249-264. Springer-Verlag, 1986.
[40]
[40] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing, Theor. Comp. Sci., 107: 121-133, 1993.
[41]
[41] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter, On determinism versus nondeterminism and related problems. In Proc. 24th FOCS, pages 429-438, 1983.
[42]
[42] W. Paul and R. Reischuk. On time versus space II. J. Comp. Sys. Sci., 22:312-327, 1981.
[43]
[43] W. Paul, J. Seiferas, and J. Simon. An information-theoretic approach to time bounds for on-line computation. J. Comp. Sys. Sci., 23: 108-126, 1981.
[44]
[44] N. Pippenger and M. Fischer. Relations among complexity measures. J. ACM, 26: 361- 381, 1979.
[45]
[45] K. Regan. Linear time and memory efficient computation. Technical report, Computer Science Department, State University of NY at Buffalo, TR 92-28, 1992. Revised version submitted to SIAM J. Comput..
[46]
[46] K. Regan. A new parallel vector model, with exact characterizations of NCk, 1993. In preparation.
[47]
[47] R. Reischuk. A fast implementation of multidimensional storage into a tree storage. Theor. Comp. Sci., 19: 253-266, 1982.
[48]
[48] C. Schnorr. Satisfiability is quasilinear complete in NQL. J. ACM, 25: 136-145, 1978.
[49]
[49] A. Schönhage. Storage modification machines. SIAM J. Comp., 9: 490-508, 1980.
[50]
[50] I. Sudborough and A. Zalcberg. On families of languages defined by time-bounded random-access machines. SIAM J. Comp., 5: 217-230, 1976.
[51]
[51] J. Trahan, M. Loui, and V. Ramachandran. Multiplication, division, and shift instructions in parallel random access machines. Theor. Comp. Sci., 100: 1-44, 1992.
[52]
[52] L. Valiant. Why is Boolean complexity theory so difficult? In M. Paterson, editor, Boolean Function Complexity, volume 169 of LMS Lecture Notes, pages 84-94. Cambridge University Press, 1992. Meeting held July 1990.
[53]
[53] P. van Emde Boas. Machine models and simulations. In J. V. Leeuwen, editor, Handbook of Theoretical Computer Science, pages 1-66. Elsevier and MIT Press, 1990.
[54]
[54] K. Wagner and G. Wechsung. Computational Complexity. D. Reidel, 1986.
[55]
[55] J. Wiedermann. Deterministic and nondeterministic simulations of the RAM by the Turing machine. In R. Mason, editor, Information Processing '83: Proc. 9th World Computer Congress, pages 163-168. North-Holland, 1983.
[56]
[56] D. Willard. A density control algorithm for doing insertions and deletions in a sequentially ordered file in a good worst-case time. Info. Comp., 97: 150-204, 1992.
[57]
[57] A. Yao. Near-optimal time-space tradeoff for element distinctness. In Proc. 29th FOCS, pages 91-97, 1988.

Cited By

View all

Index Terms

  1. Machine models and linear time complexity

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM SIGACT News
    ACM SIGACT News  Volume 24, Issue 3
    Oct. 1993
    30 pages
    ISSN:0163-5700
    DOI:10.1145/166589
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 October 1993
    Published in SIGACT Volume 24, Issue 3

    Check for updates

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)40
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 01 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media