skip to main content
10.1145/1186822.1073298acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Animating sand as a fluid

Published: 01 July 2005 Publication History

Abstract

We present a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand as a continuum. In particular we show that an existing water simulator can be turned into a sand simulator with only a few small additions to account for inter-grain and boundary friction.We also propose an alternative method for simulating fluids. Our core representation is a cloud of particles, which allows for accurate and flexible surface tracking and advection, but we use an auxiliary grid to efficiently enforce boundary conditions and incompressibility. We further address the issue of reconstructing a surface from particle data to render each frame.

Supplementary Material

MP4 File (pps068.mp4)

References

[1]
Adalsteinsson, D., and Sethian, J. 1999. The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2--22.
[2]
Bardenhagen, S. G., Brackbill, J. U., and Sulsky, D. 2000. The material-point method for granular materials. Comput. Methods Appl. Mech. Engrg. 187, 529--541.
[3]
Blinn, J. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3, 235--256.
[4]
Brackbill, J. U., and Ruppel, H. M. 1986. FLIP: a method for adaptively zoned, particle-in-cell calculuations of fluid flows in two dimensions. J. Comp. Phys. 65, 314--343.
[5]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 594--603.
[6]
Carlson, M., Mucha, P., Van Horn II, R., and Turk, G. 2002. Melting and flowing. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 167--174.
[7]
Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 377--384.
[8]
Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Comput. Anim. and Sim. '96 (Proc. of EG Workshop on Anim. and Sim.), Springer-Verlag, R. Boulic and G. Hegron, Eds., 61--76. Published under the name Marie-Paule Gascuel.
[9]
Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comp. Phys. 183, 83--116.
[10]
Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 3, 736--744.
[11]
Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., no. FEDSM2003-45144, ASME.
[12]
Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. SIGGRAPH, 15--22.
[13]
Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. SIGGRAPH, 23--30.
[14]
Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471--483.
[15]
Génevaux, O., Habibi, A., and Dischler, J.-M. 2003. Simulating fluid-solid interaction. In Graphics Interface, 31--38.
[16]
Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 463--468.
[17]
Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3, 871--878.
[18]
Harlow, F., and Welch, J. 1965. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface. Phys. Fluids 8, 2182--2189.
[19]
Harlow, F. H. 1963. The particle-in-cell method for numerical solution of problems in fluid dynamics. In Experimental arithmetic, high-speed computations and mathematics.
[20]
Herrmann, H. J., and Luding, S. 1998. Modeling granular media on the computer. Continuum Mech. Therm. 10, 189--231.
[21]
Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 253--262.
[22]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 131--140.
[23]
Jaeger, H. M., Nagel, S. R., and Behringer, R. P. 1996. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 4, 1259--1273.
[24]
Konagai, K., and Johansson, J. 2001. Two dimensional Lagrangian particle finite-difference method for modeling large soil deformations. Structural Eng./Earthquake Eng., JSCE 18, 2, 105s--110s.
[25]
Kothe, D. B., and Brackbill, J. U. 1992. FLIP-INC: a particle-in-cell method for incompressible flows. Unpublished manuscript.
[26]
Lamorlette, A. 2001. Shrek effects---flames and dragon fireballs. SIGGRAPH Course Notes, Course 19, 55--66.
[27]
Li, X., and Moshell, J. M. 1993. Modeling soil: Realtime dynamic models for soil slippage and manipulation. In Proc. SIGGRAPH, 361--368.
[28]
Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 457--462.
[29]
Luciani, A., Habibi, A., and Manzotti, E. 1995. A multiscale physical model of granular materials. In Graphics Interface, 136--146.
[30]
Milenkovic, V. J., and Schmidl, H. 2001. Optimization-based animation. In Proc. SIGGRAPH, 37--46.
[31]
Milenkovic, V. J. 1996. Position-based physics: simulating the motion of many highly interacting spheres and polyhedra. In Proc. SIGGRAPH, 129--136.
[32]
Miller, G., and Pearce, A. 1989. Globular dynamics: a connected particle system for animating viscous fluids. In Comput. & Graphics, vol. 13, 305--309.
[33]
Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543--574.
[34]
Müller, M., and Gross, M. 2004. Interactive virtual materials. In Graphics Interface.
[35]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 154--159.
[36]
Nayak, G. C., and Zienkiewicz, O. C. 1972. Elasto-plastic stress analysis. A generalization for various constitutive relations including strain softening. Int. J. Num. Meth. Eng. 5, 113--135.
[37]
O'Brien, J., Bargteil, A., and Hodgins, J. 2002. Graphical modeling of ductile fracture. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 291--294.
[38]
Onoue, K., and Nishita, T. 2003. Virtual sandbox. In Pacific Graphics, 252--262.
[39]
Pharr, M., and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann.
[40]
Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle--based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401--410.
[41]
Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directible photorealistic liquids. In Proc. ACM SIGGRAPH/Eurographics Symp. Comp. Anim., 193--202.
[42]
Savage, S. B., and Hutter, K. 1989. The motion of a finite mass of granular material down a rough incline. J. Flui Mech. 199, 177--215.
[43]
Shen, C., O'Brien, J. F., and Shewchuk, J. R. 2004. Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 896--904.
[44]
Smith, I. M., and Griffiths, D. V. 1998. Programming the Finite Element Method. J. Wiley & Sons.
[45]
Stam, J. 1999. Stable fluids. In Proc. SIGGRAPH, 121--128.
[46]
Sulsky, D., Zhou, S.-J., and Schreyer, H. L. 1995. Application of particle-in-cell method to solid mechanics. Comp. Phys. Comm. 87, 236--252.
[47]
Sumner, R. W., O'Brien, J. F., and Hodgins, J. K. 1998. Animating sand, mud, and snow. In Graphics Interface, 125--132.
[48]
Sussman, M. 2003. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J. Comp. Phys. 187, 110--136.
[49]
Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., and Ueki, H. 2003. Realistic animation of fluid with splash and foam. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 391--400.
[50]
Takeshita, D., Ota, S., Tamura, M., Fujimoto, T., and Chiba, N. 2003. Visual simulation of explosive flames. In Pacific Graphics, 482--486.
[51]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: viscoelasticity, plasticity, fracture. Proc. SIGGRAPH, 269--278.
[52]
Zhao, H. 2005. A fast sweeping method for Eikonal equations. Math. Comp. 74, 603--627.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH '05: ACM SIGGRAPH 2005 Papers
July 2005
826 pages
ISBN:9781450378253
DOI:10.1145/1186822
  • Editor:
  • Markus Gross
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2005

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. animation
  2. physical simulation
  3. sand
  4. water

Qualifiers

  • Article

Conference

SIGGRAPH05
Sponsor:

Acceptance Rates

SIGGRAPH '05 Paper Acceptance Rate 98 of 461 submissions, 21%;
Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media