skip to main content
10.1145/1046192.1046210acmconferencesArticle/Chapter ViewAbstractPublication PagesfpgaConference Proceedingsconference-collections
Article

Design of programmable interconnect for sublithographic programmable logic arrays

Published: 20 February 2005 Publication History

Abstract

Sublithographic Programmable Logic Arrays can be interconnected and restored using nanoscale wires. Building on a hybrid of bottom-up assembly techniques supported by conventional lithographic patterning, we show how modest-sized PLA logic blocks, which are efficient for implementing logic, can be organized into a segmented, Manhattan mesh interconnection scheme. The resulting programmable architecture has a macro-scale view which is reminiscent of lithographic FPGA and CPLD designs despite the fact that the low-level, sublithographic fabrication techniques used are much more highly constrained than conventional lithography and are prone to high defect rates. Using the Toronto 20 benchmark set, we begin to explore the design space for these sublithographic architectures and show that they may allow us to exploit nanowire building blocks to reach one to two orders of magnitude greater density than 22nm CMOS lithography.

References

[1]
International Technology Roadmap for Semiconductors. http://public.itrs.net/, 2003.]]
[2]
Altera Corporation, 2610 Orchard Parkway, San Jose, CA 95134-2020. Programmable Logic Device Family Data Sheet, v6.6 edition, June 2003. http://www.altera.com/literature/ds/m7000.pdf.]]
[3]
V. Betz. T-VPack: Versatile Packing, Placement and Routing for FPGAs. http://www.eecg.toronto.edu/~vaughn/vpr/vpr.html, March 27 1999. Version 4.30.]]
[4]
V. Betz and J. Rose. VPR: A New Packing, Placement, and Routing Tool for FPGA Research. In W. Luk, P. Y. K. Cheung, and M. Glesner, editors, Proceedings of the International Conference on Field-Programmable Logic and Applications, number 1304 in LNCS, pages 213--222. Springer, August 1997.]]
[5]
V. Betz and J. Rose. Routing Architecture: Segmentation and Buffering to Optimize Speed and Density. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, pages 59--68, February 1999.]]
[6]
V. Betz and J. Rose. Place-and-Route Challenge. http://www.eecg.toronto.edu/~vaughn/challenge/challenge.html, 1999.]]
[7]
V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts, 02061 USA, 1999.]]
[8]
C. L. Brown, U. Jonas, J. A. Preece, H. Ringsdorf, M. Seitz, and J. F. Stoddart. Introduction of {2}Catenanes into Langmuir Films and Langmuir-Blodgett Multilayers. A Possible Strategy for Molecular Information Storage Materials. Langmuir, 16(4):1924--1930, 2000.]]
[9]
S. Brown, M. Khellah, and Z. Vranesic. Minimizing FPGA Interconnect Delays. IEEE Design and Test of Computers, 13(4):16--23, 1996.]]
[10]
M. Butts, A. DeHon, and S. Goldstein. Electronics: Devices, Systems and Tools for Gigagate, Gigabit Chips. In Proceedings of the International Conference on Computer Aided Design, pages 433--440, November 2002.]]
[11]
D. Chen, J. Cong, M. Ercegovac, and Z. Huang. Performance-Driven Mapping for CPLD Architectures. IEEE Transactions on Computed-Aided Design for Integrated Circuits and Systems, 22(10):1424--1431, October 2003.]]
[12]
Y. Chen, G.-Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams. Nanoscale Molecular-Switch Crossbar Circuits. Nanotechnology, 14:462--468, 2003.]]
[13]
Y. Chen, D. A. A. Ohlberg, X. Li, D. R. Stewart, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, D. L. Olynick, and E. Anderson. Nanoscale Molecular-Switch Devices Fabricated by Imprint Lithography. Applied Physics Letters, 82(10):1610--1612, 2003.]]
[14]
S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang. Sub-10 nm Imprint Lithography and Applications. Journal of Vacuum Science and Technology B, 15(6):2897--2904, November-December 1997.]]
[15]
C. Collier, G. Mattersteig, E. Wong, Y. Luo, K. Beverly, J. Sampaio, F. Raymo, J. Stoddart, and J. Heath. A {2}Catenane-Based Solid State Reconfigurable Switch. Science, 289:1172--1175, 2000.]]
[16]
C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddard, P. J. Kuekes, R. S. Williams, and J. R. Heath. Electronically Configurable Molecular-Based Logic Gates. Science, 285:391--394, 1999.]]
[17]
J. Cong, D. Chen, E. Ding, Z. Huang, Y.-Y. Hwang, J. Peck, C. Wu, and S. Xu. RASP_$SYN release B 2.1: FPGA/CPLD Technology Mapping and Synthesis Package. http://ballade.cs.ucla.edu/software_release/rasp/htdocs/, 2004.]]
[18]
Y. Cui, X. Duan, J. Hu, and C. M. Lieber. Doping and Electrical Transport in Silicon Nanowires. Journal of Physical Chemistry B, 104(22):5213--5216, June 8 2000.]]
[19]
Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber. Diameter-Controlled Synthesis of Single Crystal Silicon Nanowires. Applied Physics Letters, 78(15):2214--2216, 2001.]]
[20]
Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber. High Performance Silicon Nanowire Field Effect Transistors. Nanoletters, 3(2):149--152, 2003.]]
[21]
A. DeHon. Reconfigurable Architectures for General-Purpose Computing. AI Technical Report 1586, MIT Artificial Intelligence Laboratory, 545 Technology Sq., Cambridge, MA 02139, October 1996.]]
[22]
A. DeHon. Balancing Interconnect and Computation in a Reconfigurable Computing Array (or, why you don't really want 100% LUT utilization). In Proceedings of the International Symposium on Field-Programmable Gate Arrays, pages 69--78, February 1999.]]
[23]
A. DeHon. Array-Based Architecture for FET-based, Nanoscale Electronics. IEEE Transactions on Nanotechnology, 2(1):23--32, March 2003.]]
[24]
A. DeHon. Law of Large Numbers System Design. In S. K. Shukla and R. I. Bahar, editors, Nano, Quantum and Molecular Computing: Implications to High Level Design and Validation, chapter 7, pages 213--241. Kluwer, 2004.]]
[25]
A. DeHon, P. Lincoln, and J. Savage. Stochastic Assembly of Sublithographic Nanoscale Interfaces. IEEE Transactions on Nanotechnology, 2(3):165--174, 2003.]]
[26]
A. DeHon and M. J. Wilson. Nanowire-Based Sublithographic Programmable Logic Arrays. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, pages 123--132, February 2004. Extended Version: http://www.cs.caltech.edu/research/ic/abstracts/nanopla_fpga2004.html.]]
[27]
S. C. Goldstein and M. Budiu. NanoFabrics: Spatial Computing Using Molecular Electronics. In Proceedings of the International Symposium on Computer Architecture, pages 178--189, June 2001.]]
[28]
M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber. Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics. Nature, 415:617--620, February 7 2002.]]
[29]
J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams. A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology. Science, 280:1716--1721, June 12 1998.]]
[30]
Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and C. M. Lieber. Logic Gates and Computation from Assembled Nanowire Building Blocks. Science, 294:1313--1317, 2001.]]
[31]
Y. Huang, X. Duan, Q. Wei, and C. M. Lieber. Directed Assembly of One-Dimensional Nanostructures into Functional Networks. Science, 291:630--633, January 26 2001.]]
[32]
J. Kouloheris and A. E. Gamal. PLA-based FPGA Area versus Cell Granularity. In Proceedings of the Custom Integrated Circuits Conference, pages 4.3.1--4. IEEE, May 1992.]]
[33]
L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber. Epitaxial Core-Shell and Core-Multi-Shell Nanowire Heterostructures. Nature, 420:57--61, 2002.]]
[34]
G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional and Single-Driver Wires in FPGA Interconnect. In Proceedings of the International Conference on Field-Programmable Technology, pages 41--48, December 2004.]]
[35]
Y. Luo, P. Collier, J. O. Jeppesen, K. A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J. F. Stoddart, and J. R. Heath. Two-Dimensional Molecular Electronics Circuits. ChemPhysChem, 3(6):519--525, 2002.]]
[36]
L. McMurchie and C. Ebling. PathFinder: A Negotiation Based Performance-Driven Router for FPGAs. In Proceedings of the International Symposium on Field-Programmable Gate Arrays, pages 111--117. ACM, February 1995.]]
[37]
A. M. Morales and C. M. Lieber. A Laser Ablation Method for Synthesis of Crystalline Semiconductor Nanowires. Science, 279:208--211, 1998.]]
[38]
H. Naeimi and A. DeHon. A Greedy Algorithm for Tolerating Defective Crosspoints in NanoPLA Design. In Proceedings of the International Conference on Field-Programmable Technology, pages 49--56. IEEE, December 2004.]]
[39]
T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber. Carbon Nanotube Based Nonvolatile Random Access Memory for Molecular Computing. Science, 289:94--97, 2000.]]
[40]
E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis. UCB/ERL M92/41, University of California, Berkeley, May 1992.]]
[41]
G. Snider, P. Kuekes, and R. S. Williams. CMOS-like Logic in Defective, Nanoscale Crossbars. Nanotechnology, 15:881--891, June 2004.]]
[42]
D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart. Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices. Nanoletters, 4(1):133--136, 2004.]]
[43]
R. Tessier and H. Giza. Balancing Logic Utilization and Area Efficiency in FPGAs. In R. W. Hartenstein and H. Grübacher, editors, Proceedings of the International Conference on Field-Programmable Logic and Applications, number 1896 in LNCS, pages 535--544. Springer, August 2000.]]
[44]
D. Whang, S. Jin, and C. M. Lieber. Nanolithography Using Hierarchically Assembled Nanowire Masks. Nanoletters, 3(7):951--954, July 9 2003.]]
[45]
D. Whang, S. Jin, Y. Wu, and C. M. Lieber. Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems. Nanoletters, 3(9):1255--1259, September 2003.]]
[46]
Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber. Controlled Growth and Structures of Molecular-Scale Silicon Nanowires. Nanoletters, 4(3):433--436, 2004.]]
[47]
Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber. Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures. Nature, 430:61--64, July 1 2004.]]
[48]
Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124. XC9500XV Family High-Performance CPLD Data Sheet, v2.1 edition, June 2002. DS049 http://www.xilinx.com/bvdocs/publications/ds049.pdf.]]

Cited By

View all

Index Terms

  1. Design of programmable interconnect for sublithographic programmable logic arrays

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      FPGA '05: Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays
      February 2005
      288 pages
      ISBN:1595930299
      DOI:10.1145/1046192
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 20 February 2005

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Manhattan mesh
      2. nanowires
      3. programmable interconnect
      4. programmable logic arrays
      5. sublithographic architecture

      Qualifiers

      • Article

      Conference

      FPGA05
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 125 of 627 submissions, 20%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)8
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 13 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media