Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pig as an optimal animal model for cardiovascular research

Abstract

Cardiovascular disease is a worldwide health problem and a leading cause of morbidity and mortality. Preclinical cardiovascular research using animals is needed to explore potential targets and therapeutic options. Compared with rodents, pigs have many advantages, with their anatomy, physiology, metabolism and immune system being more similar to humans. Here we present an overview of the available pig models for cardiovascular diseases, discuss their advantages over other models and propose the concept of standardized models to improve translation to the clinical setting and control research costs.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Orthotopic transplantation and heterotopic transplantation.

Similar content being viewed by others

References

  1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article  Google Scholar 

  2. Tsao, C. W. et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 147, e93–e621 (2023).

    Article  PubMed  Google Scholar 

  3. Suzuki, Y., Yeung, A. C. & Ikeno, F. The pre-clinical animal model in the translational research of interventional cardiology. JACC Cardiovasc. Interv. 2, 373–383 (2009).

    Article  PubMed  Google Scholar 

  4. Robinson, N. B. et al. The current state of animal models in research: a review. Int. J. Surg. 72, 9–13 (2019).

    Article  PubMed  Google Scholar 

  5. Pound, P. & Ritskes-Hoitinga, M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J. Transl. Med. 16, 304 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Crisóstomo, V. et al. Common swine models of cardiovascular disease for research and training. Lab Anim. 45, 67–74 (2016).

    Article  Google Scholar 

  7. Silva, K. A. S. & Emter, C. A. Large animal models of heart failure: a translational bridge to clinical success. JACC Basic Transl. Sci. 5, 840–856 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shu, S., Ren, J. & Song, J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail. Rev. 27, 71–91 (2022).

    Article  PubMed  Google Scholar 

  9. Lelovas, P. P., Kostomitsopoulos, N. G. & Xanthos, T. T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab Anim. Sci. 53, 432–438 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. Jr. & Frazier, K. S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Mathern, N., Yousefian, E., Ridwan, H., Nikoubashman, O. & Wiesmann, M. Comparison of porcine and human vascular diameters for the optimization of interventional stroke training and research. PLoS ONE 17, e0268005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elmadhun, N. Y. et al. The pig as a valuable model for testing the effect of resveratrol to prevent cardiovascular disease. Ann. NY Acad. Sci. 1290, 130–135 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Kuwahara, M. et al. Effects of pair housing on diurnal rhythms of heart rate and heart rate variability in miniature swine. Exp. Anim. 53, 303–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Zuo, K. et al. Measurement of the luminal diameter of peripheral arterial vasculature in Yorkshire×Landrace swine by using ultrasonography and angiography. J. Am. Assoc. Lab Anim. Sci. 59, 438–444 (2020).

    PubMed  PubMed Central  Google Scholar 

  16. Kassab, G. S. & Fung, Y. C. Topology and dimensions of pig coronary capillary network. Am. J. Physiol. 267, H319–H325 (1994).

    CAS  PubMed  Google Scholar 

  17. Kumar, D. et al. Distinct mouse coronary anatomy and myocardial infarction consequent to ligation. Coron. Artery Dis. 16, 41–44 (2005).

    Article  PubMed  Google Scholar 

  18. Gallet, R. et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur. Heart J. 38, 201–211 (2017).

    CAS  PubMed  Google Scholar 

  19. Huang, P. et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res. 116, 353–367 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Thirugnanasambandam, M. et al. Effect of collateral flow on catheter-based assessment of cardiac microvascular obstruction. Ann. Biomed. Eng. 50, 1090–1102 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Genain, M. A. et al. Comparative anatomy and angiography of the cardiac coronary venous system in four species: human, ovine, porcine, and canine. J. Vet. Cardiol. 20, 33–44 (2018).

    Article  PubMed  Google Scholar 

  22. Siepe, M. et al. Anatomical study on the surgical technique used for xenotransplantation: porcine hearts into humans. J. Surg. Res. 143, 211–215 (2007).

    Article  PubMed  Google Scholar 

  23. Wessels, A. & Sedmera, D. Developmental anatomy of the heart: a tale of mice and man. Physiol. Genomics 15, 165–176 (2003).

    Article  PubMed  Google Scholar 

  24. Crick, S. J., Sheppard, M. N., Ho, S. Y., Gebstein, L. & Anderson, R. H. Anatomy of the pig heart: comparisons with normal human cardiac structure. J. Anat. 193, 105–119 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Oglesby, M. et al. Trabecular cutting: a novel surgical therapy to increase diastolic compliance. J. Appl. Physiol. 127, 457–463 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Yamauchi, H. et al. Creation of nonischemic functional mitral regurgitation by annular dilatation and nonplanar modification in a chronic in vivo swine model. Circulation 128, S263–S270 (2013).

    Article  PubMed  Google Scholar 

  27. Wylensek, D. et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 11, 6389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lim, M. Y., Song, E. J., Kang, K. S. & Nam, Y. D. Age-related compositional and functional changes in micro-pig gut microbiome. Geroscience 41, 935–944 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heinritz, S. N., Mosenthin, R. & Weiss, E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr. Res. Rev. 26, 191–209 (2013).

    Article  PubMed  Google Scholar 

  30. Li, X. et al. Establishment of a Macaca fascicularis gut microbiome gene catalog and comparison with the human, pig, and mouse gut microbiomes. Gigascience 7, giy100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schelstraete, W., Devreese, M. & Croubels, S. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem. Toxicol. 137, 111140 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Dawson, H. D. et al. Structural and functional annotation of the porcine immunome. BMC Genomics 14, 332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Clapperton, M., Glass, E. J. & Bishop, S. C. Pig peripheral blood mononuclear leucocyte subsets are heritable and genetically correlated with performance. Animal 2, 1575–1584 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Groenen, M. A. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Warr, A. et al. An improved pig reference genome sequence to enable pig genetics and genomics research. Gigascience 9, giaa051 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kooij, V. et al. Sizing up models of heart failure: proteomics from flies to humans. Proteomics Clin. Appl. 8, 653–664 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Elnakish, M. T., Hassanain, H. H. & Janssen, P. M. Vascular remodeling-associated hypertension leads to left ventricular hypertrophy and contractile dysfunction in profilin-1 transgenic mice. J. Cardiovasc. Pharmacol. 60, 544–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Rafael-Fortney, J. A. et al. Early treatment with lisinopril and spironolactone preserves cardiac and skeletal muscle in Duchenne muscular dystrophy mice. Circulation 124, 582–588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Müller, O. J. et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc. Res. 70, 70–78 (2006).

    Article  PubMed  Google Scholar 

  41. Su, H. et al. AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid. J. Gene Med. 10, 33–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, S. et al. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci. Transl. Med. 13, eabd6892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Costa, F. M. et al. Impact of ESC/ACCF/AHA/WHF universal definition of myocardial infarction on mortality at 10 years. Eur. Heart J. 33, 2544–2550 (2012).

    Article  PubMed  Google Scholar 

  44. Samsky, M. D. et al. Cardiogenic shock after acute myocardial infarction: a review. JAMA 326, 1840–1850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang, X. et al. Stem cells for myocardial repair with use of a transarterial catheter. Circulation 120, S238–S246 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Inagaki, K. et al. Inhibition of delta-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation 108, 2304–2307 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Traxler, D. et al. Early elevation of systemic plasma clusterin after reperfused acute myocardial infarction in a preclinical porcine model of ischemic heart disease. Int. J. Mol. Sci. 21, 4591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vilahur, G. et al. Protective effects of ticagrelor on myocardial injury after infarction. Circulation 134, 1708–1719 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Crisostomo, V. et al. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells. Stem Cell Res. Ther. 10, 152 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fernández-Jiménez, R. et al. Myocardial edema after ischemia/reperfusion is not stable and follows a bimodal pattern: imaging and histological tissue characterization. J. Am. Coll. Cardiol. 65, 315–323 (2015).

    Article  PubMed  Google Scholar 

  51. Malliaras, K. et al. Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation 128, 2764–2775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pulido, M. et al. Transcriptome profile reveals differences between remote and ischemic myocardium after acute myocardial infarction in a swine model. Biology 12, 340 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trivella, M. G. et al. Percutaneous cardiac support during myocardial infarction drastically reduces mortality: perspectives from a swine model. Int. J. Artif. Organs 40, 338–344 (2017).

    Article  PubMed  Google Scholar 

  54. Delgado-Montero, A. et al. Blood stasis imaging predicts cerebral microembolism during acute myocardial infarction. J. Am. Soc. Echocardiogr. 33, 389–398 (2020).

    Article  PubMed  Google Scholar 

  55. Lim, M. et al. Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res. Ther. 9, 129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lubberding, A. F., Sattler, S. M., Flethøj, M., Tfelt-Hansen, J. & Jespersen, T. Comparison of hemodynamics, cardiac electrophysiology, and ventricular arrhythmia in an open- and a closed-chest porcine model of acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 318, H391–h400 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Malyar, N. M., Lerman, L. O., Gössl, M., Beighley, P. E. & Ritman, E. L. Relation of nonperfused myocardial volume and surface area to left ventricular performance in coronary microembolization. Circulation 110, 1946–1952 (2004).

    Article  PubMed  Google Scholar 

  58. Carlsson, M., Wilson, M., Martin, A. J. & Saeed, M. Myocardial microinfarction after coronary microembolization in swine: MR imaging characterization. Radiology 250, 703–713 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kleinbongard, P. & Heusch, G. A fresh look at coronary microembolization. Nat. Rev. Cardiol. 19, 265–280 (2022).

    Article  PubMed  Google Scholar 

  60. Pascual Izco, M. et al. Ivabradine in acute heart failure: effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial. Cardiol. J. 27, 62–71 (2020).

    Article  PubMed  Google Scholar 

  61. Rønning, L. et al. Opposite diastolic effects of omecamtiv mecarbil versus dobutamine and ivabradine co-treatment in pigs with acute ischemic heart failure. Physiol. Rep. 6, e13879 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Olivari, D. et al. Searching for preclinical models of acute decompensated heart failure: a concise narrative overview and a novel swine model. Cardiovasc. Drugs Ther. 36, 727–738 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cahill, T. J., Choudhury, R. P. & Riley, P. R. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat. Rev. Drug. Discov. 16, 699–717 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Zhu, W. et al. Regenerative potential of neonatal porcine hearts. Circulation 138, 2809–2816 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Panchal, A. R. et al. 2019 American Heart Association focused update on advanced cardiovascular life support: use of advanced airways, vasopressors, and extracorporeal cardiopulmonary resuscitation during cardiac arrest: an update to the American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 140, e881–e894 (2019).

    PubMed  Google Scholar 

  70. Hoogendoorn, A. et al. Variation in coronary atherosclerosis severity related to a distinct LDL (low-density lipoprotein) profile: findings from a familial hypercholesterolemia pig model. Arterioscler. Thromb. Vasc. Biol. 39, 2338–2352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Denolin, H., Kuhn, H., Krayenbuehl, H. P., Loogen, F. & Reale, A. The definition of heart failure. Eur. Heart J. 4, 445–448 (1983).

    Article  CAS  PubMed  Google Scholar 

  72. McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e895–e1032 (2022).

    PubMed  Google Scholar 

  74. Savarese, G., Stolfo, D., Sinagra, G. & Lund, L. H. Heart failure with mid-range or mildly reduced ejection fraction. Nat. Rev. Cardiol. 19, 100–116 (2022).

    Article  PubMed  Google Scholar 

  75. Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 17, 559–573 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Harjola, V. P. et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 19, 821–836 (2017).

    Article  PubMed  Google Scholar 

  77. Naar, J. et al. Acute severe heart failure reduces heart rate variability: an experimental study in a porcine model. Int. J. Mol. Sci. 24, 493 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lacko, S. et al. Severe acute heart failure - experimental model with very low mortality. Physiol. Res. 67, 555–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Roche, E. T. et al. Soft robotic sleeve supports heart function. Sci. Transl. Med. 9, eaaf3925 (2017).

    Article  PubMed  Google Scholar 

  80. Tsao, C. W. et al. Heart Disease and Stroke Statistics-2022 Update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

    Article  PubMed  Google Scholar 

  81. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Khatibzadeh, S., Farzadfar, F., Oliver, J., Ezzati, M. & Moran, A. Worldwide risk factors for heart failure: a systematic review and pooled analysis. Int. J. Cardiol. 168, 1186–1194 (2013).

    Article  PubMed  Google Scholar 

  84. Sharp, T. E. 3rd et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J. Am. Coll. Cardiol. 72, 2609–2621 (2018).

    Article  PubMed  Google Scholar 

  85. Schuleri, K. H. et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp. Med. 58, 568–579 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sassoon, D. J. et al. Glucagon-like peptide 1 receptor activation augments cardiac output and improves cardiac efficiency in obese swine after myocardial infarction. Diabetes 66, 2230–2240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martínez-Milla, J. et al. Translational large animal model of hibernating myocardium: characterization by serial multimodal imaging. Basic Res. Cardiol. 115, 33 (2020).

    Article  PubMed  Google Scholar 

  88. Onohara, D. et al. Image-guided targeted mitral valve tethering with chordal encircling snares as a preclinical model of secondary mitral regurgitation. J. Cardiovasc. Transl. Res. 15, 653–665 (2022).

    Article  PubMed  Google Scholar 

  89. Watanabe, S., Bikou, O., Hajjar, R. J. & Ishikawa, K. Swine model of mitral regurgitation induced heart failure. Methods Mol. Biol. 1816, 327–335 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Möllmann, H. et al. Desynchronization: a novel model to induce heart failure. Thorac. Cardiovasc. Surg. 57, 441–448 (2009).

    Article  PubMed  Google Scholar 

  91. Pfeffer, M. A., Shah, A. M. & Borlaug, B. A. Heart failure with preserved ejection fraction in perspective. Circ. Res. 124, 1598–1617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Olver, T. D. et al. Western diet-fed, aortic-banded Ossabaw swine: a preclinical model of cardio-metabolic heart failure. JACC Basic Transl. Sci. 4, 404–421 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Sharp, T. E. 3rd et al. Novel Göttingen miniswine model of heart failure with preserved ejection fraction integrating multiple comorbidities. JACC Basic Transl. Sci. 6, 154–170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Charles, C. J. et al. A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. ESC Heart Fail. 7, 92–102 (2020).

    PubMed  Google Scholar 

  95. Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 29, 270–276 (2008).

    Article  PubMed  Google Scholar 

  96. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  97. Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Jefferies, J. L. & Towbin, J. A. Dilated cardiomyopathy. Lancet 375, 752–762 (2010).

    Article  PubMed  Google Scholar 

  99. Argulian, E., Sherrid, M. V. & Messerli, F. H. Misconceptions and facts about hypertrophic cardiomyopathy. Am. J. Med. 129, 148–152 (2016).

    Article  PubMed  Google Scholar 

  100. Marian, A. J. & Braunwald, E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 121, 749–770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Maron, B. J. & Maron, M. S. Hypertrophic cardiomyopathy. Lancet 381, 242–255 (2013).

    Article  PubMed  Google Scholar 

  102. del Rio, C. L. et al. Abstract 20770: a novel mini-pig genetic model of hypertrophic cardiomyopathy: altered myofilament dynamics, hyper-contractility, and impaired systolic/diastolic functional reserve in vivo. Circulation 136, A20770 (2017).

    Google Scholar 

  103. Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. von der Ecken, J., Heissler, S. M., Pathan-Chhatbar, S., Manstein, D. J. & Raunser, S. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534, 724–728 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Sewanan, L. R. et al. Extracellular matrix from hypertrophic myocardium provokes impaired twitch dynamics in healthy cardiomyocytes. JACC Basic Transl. Sci. 4, 495–505 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Montag, J. et al. Successful knock-in of hypertrophic cardiomyopathy-mutation R723G into the MYH7 gene mimics HCM pathology in pigs. Sci. Rep. 8, 4786 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kraft, T. et al. Familial hypertrophic cardiomyopathy: functional effects of myosin mutation R723G in cardiomyocytes. J. Mol. Cell. Cardiol. 57, 13–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. McKenna, W. J. & Judge, D. P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 18, 22–36 (2021).

    Article  PubMed  Google Scholar 

  109. Marsman, E. M. J., Postema, P. G. & Remme, C. A. Brugada syndrome: update and future perspectives. Heart 108, 668–675 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Park, D. S. et al. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Invest. 125, 403–412 (2015).

    Article  PubMed  Google Scholar 

  111. Schneider, J. W. et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat. Med. 26, 1788–1800 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Farrar, D. J., Chow, E. & Brown, C. D. Isolated systolic and diastolic ventricular interactions in pacing-induced dilated cardiomyopathy and effects of volume loading and pericardium. Circulation 92, 1284–1290 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Schroeder, M. A. et al. Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur. J. Heart Fail. 15, 130–140 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Saito, Y. et al. Direct epicardial assist device using artificial rubber muscle in a swine model of pediatric dilated cardiomyopathy. Int. J. Artif. Organs 38, 588–594 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Tanaka, Y. et al. Diffuse fibrosis leads to a decrease in unipolar voltage: validation in a swine model of premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 13, 547–554 (2016).

    Article  PubMed  Google Scholar 

  117. Hirai, K. et al. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci. Transl. Med. 12, eabb3336 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Crespo-Leiro, M. G. et al. Heart transplantation: focus on donor recovery strategies, left ventricular assist devices, and novel therapies. Eur. Heart J. 43, 2237–2246 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Russo, M. J. et al. The effect of ischemic time on survival after heart transplantation varies by donor age: an analysis of the United Network for Organ Sharing database. J. Thorac. Cardiovasc. Surg. 133, 554–559 (2007).

    Article  PubMed  Google Scholar 

  120. Thomas, S. S. & D’Alessandro, D. A. Traumatic brains and broken hearts: mending the donor shortage in cardiac transplantation. J. Am. Coll. Cardiol. 70, 1259–1261 (2017).

    Article  PubMed  Google Scholar 

  121. Pahuja, M., Case, B. C., Molina, E. J. & Waksman, R. Overview of the FDA’s Circulatory System Devices Panel virtual meeting on the TransMedics Organ Care System (OCS) Heart—portable extracorporeal heart perfusion and monitoring system. Am. Heart J. 247, 90–99 (2022).

    Article  PubMed  Google Scholar 

  122. Ardehali, A. et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 385, 2577–2584 (2015).

    Article  PubMed  Google Scholar 

  123. García Sáez, D. et al. Ex vivo heart perfusion after cardiocirculatory death; a porcine model. J. Surg. Res. 195, 311–314 (2015).

    Article  PubMed  Google Scholar 

  124. Mohiuddin, M. M., Reichart, B., Byrne, G. W. & McGregor, C. G. A. Current status of pig heart xenotransplantation. Int. J. Surg. 23, 234–239 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhu, Y. et al. The Stanford experience of heart transplantation over five decades. Eur. Heart J. 42, 4934–4943 (2021).

    Article  PubMed  Google Scholar 

  126. Pepper, J. R., Khagani, A. & Yacoub, M. Heart transplantation. J. Antimicrob. Chemother. 36, 23–38 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Singh, T. P. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-fourth pediatric heart transplantation report - 2021; focus on recipient characteristics. J. Heart Lung Transplant. 40, 1050–1059 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Stehlik, J. et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. J. Heart Lung Transplant. 31, 1052–1064 (2012).

    Article  PubMed  Google Scholar 

  129. Messer, S. et al. Human heart transplantation from donation after circulatory-determined death donors using normothermic regional perfusion and cold storage. J. Heart Lung Transplant. 37, 865–869 (2018).

    Article  PubMed  Google Scholar 

  130. Gao, S. Z. et al. Prevalence of accelerated coronary artery disease in heart transplant survivors. Comparison of cyclosporine and azathioprine regimens. Circulation 80, Iii100–Iii105 (1989).

    CAS  PubMed  Google Scholar 

  131. Madariaga, M. L. et al. Induction of cardiac allograft tolerance across a full MHC barrier in miniature swine by donor kidney cotransplantation. Am. J. Transplant. 13, 2558–2566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yamada, K. et al. The effect of thymectomy on tolerance induction and cardiac allograft vasculopathy in a miniature swine heart/kidney transplantation model. Transplantation 68, 485–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Schwarze, M. L. et al. Effects of mycophenolate mofetil on cardiac allograft survival and cardiac allograft vasculopathy in miniature swine. Ann. Thorac. Surg. 80, 1787–1793 (2005).

    Article  PubMed  Google Scholar 

  134. Madsen, J. C., Sachs, D. H., Fallon, J. T. & Weissman, N. J. Cardiac allograft vasculopathy in partially inbred miniature swine. I. Time course, pathology, and dependence on immune mechanisms. J. Thorac. Cardiovasc. Surg. 111, 1230–1239 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Sachs, D. H. et al. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation 22, 559–567 (1976).

    Article  CAS  PubMed  Google Scholar 

  136. Badiwala, M. V. et al. Donor pretreatment with hypertonic saline attenuates primary allograft dysfunction: a pilot study in a porcine model. Circulation 120, S206–S214 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Ribeiro, R. V. P., Badiwala, M. V., Ramzy, D., Tumiati, L. C. & Rao, V. Recipient hypertonic saline infusion prevents cardiac allograft dysfunction. J. Thorac. Cardiovasc. Surg. 157, 615–625.e1 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Watson, A. J. et al. Enhanced preservation of pig cardiac allografts by combining erythropoietin with glyceryl trinitrate and zoniporide. Am. J. Transplant. 13, 1676–1687 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Grant, A. A. et al. In vivo resuscitation, perfusion, and transplantation of a porcine cardiac allograft donated after circulatory death. J. Card. Surg. 35, 300–303 (2020).

    Article  PubMed  Google Scholar 

  140. Cooper, D. K. C. & Pierson, R. N. 3rd The future of cardiac xenotransplantation. Nat. Rev. Cardiol. 19, 281–282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Singh, A. K. et al. Cardiac xenotransplantation: progress in preclinical models and prospects for clinical translation. Transpl. Int. 35, 10171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Phelps, C. J. et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Kuwaki, K. et al. Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat. Med. 11, 29–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Tector, A. J., Mosser, M., Tector, M. & Bach, J. M. The possible role of anti-Neu5Gc as an obstacle in xenotransplantation. Front. Immunol. 11, 622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Byrne, G., Ahmad-Villiers, S., Du, Z. & McGregor, C. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen. Xenotransplantation 25, e12394 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lutz, A. J. et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27–35 (2013).

    Article  PubMed  Google Scholar 

  148. McGregor, C. G. et al. Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts. Transplantation 93, 686–692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Iwase, H. et al. Pig-to-baboon heterotopic heart transplantation–exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation 22, 211–220 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mohiuddin, M. M. et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat. Commun. 7, 11138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Abicht, J. M. et al. Multiple genetically modified GTKO/hCD46/HLA-E/hβ2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood. Xenotransplantation 25, e12390 (2018).

    Article  PubMed  Google Scholar 

  152. Chan, J. L. et al. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation 24, e12330 (2017).

    Article  Google Scholar 

  153. Khush, K. K. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: 37th adult heart transplantation report-2020; focus on deceased donor characteristics. J. Heart Lung Transplant. 39, 1003–1015 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Salter, B. S. et al. Temporary mechanical circulatory support devices: practical considerations for all stakeholders. Nat. Rev. Cardiol. 20, 263–277 (2023).

  155. Vincent, F. et al. Arterial pulsatility and circulating von Willebrand factor in patients on mechanical circulatory support. J. Am. Coll. Cardiol. 71, 2106–2118 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Sonntag, S. J. et al. Virtual implantations to transition from porcine to bovine animal models for a total artificial heart. Artif. Organs 44, 384–393 (2020).

    Article  PubMed  Google Scholar 

  157. Lawton, J. S. et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e4–e17 (2022).

    PubMed  Google Scholar 

  158. Hocum Stone, L. L. et al. Magnetic resonance imaging assessment of cardiac function in a swine model of hibernating myocardium 3 months following bypass surgery. J. Thorac. Cardiovasc. Surg. 153, 582–590 (2017).

    Article  PubMed  Google Scholar 

  159. Itoda, Y. et al. Novel anastomotic device for distal coronary anastomosis: preclinical results from swine off-pump coronary artery bypass model. Ann. Thorac. Surg. 101, 736–741 (2016).

    Article  PubMed  Google Scholar 

  160. Hocum Stone, L. et al. Cardiac strain in a swine model of regional hibernating myocardium: effects of CoQ10 on contractile reserve following bypass surgery. J. Cardiovasc. Transl. Res. 9, 368–373 (2016).

    Article  PubMed  Google Scholar 

  161. Hocum Stone, L. L. et al. Recovery of hibernating myocardium using stem cell patch with coronary bypass surgery. J. Thorac. Cardiovasc. Surg. 162, e3–e16 (2021).

    Article  PubMed  Google Scholar 

  162. Veres, G. et al. Is internal thoracic artery resistant to reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. J. Thorac. Cardiovasc. Surg. 156, 1460–1469 (2018).

    Article  PubMed  Google Scholar 

  163. Tomášek, P. et al. Histological mapping of porcine carotid arteries—an animal model for the assessment of artificial conduits suitable for coronary bypass grafting in humans. Ann. Anat. 228, 151434 (2020).

    Article  PubMed  Google Scholar 

  164. Grajciarová, M. et al. Are ovine and porcine carotid arteries equivalent animal models for experimental cardiac surgery: a quantitative histological comparison. Ann. Anat. 242, 151910 (2022).

    Article  PubMed  Google Scholar 

  165. Garoffolo, G. et al. Coronary artery mechanics induces human saphenous vein remodelling via recruitment of adventitial myofibroblast-like cells mediated by Thrombospondin-1. Theranostics 10, 2597–2611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Dahan, N. et al. Dynamic autologous reendothelialization of small-caliber arterial extracellular matrix: a preclinical large animal study. Tissue Eng. Part A 23, 69–79 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fukushima, S. et al. A reproducible swine model of a surgically created saccular thoracic aortic aneurysm. Exp. Anim. 70, 257–263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Takano, T., Katada, Y., Komaki, N., Onozawa, S. & Yokoyama, H. A technique for creating an experimental type Ia endoleak model in the thoracic aorta of swine. Jpn. J. Radiol. 39, 1127–1132 (2021).

    Article  PubMed  Google Scholar 

  169. Argenta, R., Perini, S. C. & Pereira, A. H. Thoracic aortic aneurysm. An experimental model in pigs. Acta Cir. Bras. 36, e360602 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Boufi, M. et al. Endovascular creation and validation of acute in vivo animal model for type A aortic dissection. J. Surg. Res. 225, 21–28 (2018).

    Article  PubMed  Google Scholar 

  171. Lugenbiel, P. et al. Atrial myofibroblast activation and connective tissue formation in a porcine model of atrial fibrillation and reduced left ventricular function. Life Sci. 181, 1–8 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Boulate, D. et al. Induction and phenotyping of acute right heart failure in a large animal model of chronic thromboembolic pulmonary hypertension. J. Vis. Exp. 181, e58057 (2022).

    Google Scholar 

  173. Christiansen, J. G. et al. Systemic inflammatory response and local cytokine expression in porcine models of endocarditis. Apmis 122, 292–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Cruz, F. M. et al. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J. Am. Coll. Cardiol. 65, 1438–1450 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund for Distinguished Young Scholars of China (82125004; to J.S.) and the Frontier Biotechnology Key Project of National Key R & D Program of the Ministry of Science and Technology of China (2023YFC3404300; to J.S.).

Author information

Authors and Affiliations

Authors

Contributions

J.S. contributed to the article’s conceptualization. H.J. was instrumental in drafting and revising the manuscript. Y.C. was responsible for drafting the manuscript and designing the figure.

Corresponding author

Correspondence to Jiangping Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Verónica Crisóstomo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Chang, Y. & Song, J. The pig as an optimal animal model for cardiovascular research. Lab Anim 53, 136–147 (2024). https://doi.org/10.1038/s41684-024-01377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-024-01377-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing