Abstract
Cardiovascular disease is a worldwide health problem and a leading cause of morbidity and mortality. Preclinical cardiovascular research using animals is needed to explore potential targets and therapeutic options. Compared with rodents, pigs have many advantages, with their anatomy, physiology, metabolism and immune system being more similar to humans. Here we present an overview of the available pig models for cardiovascular diseases, discuss their advantages over other models and propose the concept of standardized models to improve translation to the clinical setting and control research costs.
This is a preview of subscription content, access via your institution
Access options
Similar content being viewed by others
References
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).
Tsao, C. W. et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 147, e93–e621 (2023).
Suzuki, Y., Yeung, A. C. & Ikeno, F. The pre-clinical animal model in the translational research of interventional cardiology. JACC Cardiovasc. Interv. 2, 373–383 (2009).
Robinson, N. B. et al. The current state of animal models in research: a review. Int. J. Surg. 72, 9–13 (2019).
Pound, P. & Ritskes-Hoitinga, M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J. Transl. Med. 16, 304 (2018).
Crisóstomo, V. et al. Common swine models of cardiovascular disease for research and training. Lab Anim. 45, 67–74 (2016).
Silva, K. A. S. & Emter, C. A. Large animal models of heart failure: a translational bridge to clinical success. JACC Basic Transl. Sci. 5, 840–856 (2020).
Shu, S., Ren, J. & Song, J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail. Rev. 27, 71–91 (2022).
Lelovas, P. P., Kostomitsopoulos, N. G. & Xanthos, T. T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab Anim. Sci. 53, 432–438 (2014).
Swindle, M. M., Makin, A., Herron, A. J., Clubb, F. J. Jr. & Frazier, K. S. Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2012).
Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl. Med. 13, eabd5758 (2021).
Mathern, N., Yousefian, E., Ridwan, H., Nikoubashman, O. & Wiesmann, M. Comparison of porcine and human vascular diameters for the optimization of interventional stroke training and research. PLoS ONE 17, e0268005 (2022).
Elmadhun, N. Y. et al. The pig as a valuable model for testing the effect of resveratrol to prevent cardiovascular disease. Ann. NY Acad. Sci. 1290, 130–135 (2013).
Kuwahara, M. et al. Effects of pair housing on diurnal rhythms of heart rate and heart rate variability in miniature swine. Exp. Anim. 53, 303–309 (2004).
Zuo, K. et al. Measurement of the luminal diameter of peripheral arterial vasculature in Yorkshire×Landrace swine by using ultrasonography and angiography. J. Am. Assoc. Lab Anim. Sci. 59, 438–444 (2020).
Kassab, G. S. & Fung, Y. C. Topology and dimensions of pig coronary capillary network. Am. J. Physiol. 267, H319–H325 (1994).
Kumar, D. et al. Distinct mouse coronary anatomy and myocardial infarction consequent to ligation. Coron. Artery Dis. 16, 41–44 (2005).
Gallet, R. et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur. Heart J. 38, 201–211 (2017).
Huang, P. et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res. 116, 353–367 (2020).
Thirugnanasambandam, M. et al. Effect of collateral flow on catheter-based assessment of cardiac microvascular obstruction. Ann. Biomed. Eng. 50, 1090–1102 (2022).
Genain, M. A. et al. Comparative anatomy and angiography of the cardiac coronary venous system in four species: human, ovine, porcine, and canine. J. Vet. Cardiol. 20, 33–44 (2018).
Siepe, M. et al. Anatomical study on the surgical technique used for xenotransplantation: porcine hearts into humans. J. Surg. Res. 143, 211–215 (2007).
Wessels, A. & Sedmera, D. Developmental anatomy of the heart: a tale of mice and man. Physiol. Genomics 15, 165–176 (2003).
Crick, S. J., Sheppard, M. N., Ho, S. Y., Gebstein, L. & Anderson, R. H. Anatomy of the pig heart: comparisons with normal human cardiac structure. J. Anat. 193, 105–119 (1998).
Oglesby, M. et al. Trabecular cutting: a novel surgical therapy to increase diastolic compliance. J. Appl. Physiol. 127, 457–463 (2019).
Yamauchi, H. et al. Creation of nonischemic functional mitral regurgitation by annular dilatation and nonplanar modification in a chronic in vivo swine model. Circulation 128, S263–S270 (2013).
Wylensek, D. et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 11, 6389 (2020).
Lim, M. Y., Song, E. J., Kang, K. S. & Nam, Y. D. Age-related compositional and functional changes in micro-pig gut microbiome. Geroscience 41, 935–944 (2019).
Heinritz, S. N., Mosenthin, R. & Weiss, E. Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr. Res. Rev. 26, 191–209 (2013).
Li, X. et al. Establishment of a Macaca fascicularis gut microbiome gene catalog and comparison with the human, pig, and mouse gut microbiomes. Gigascience 7, giy100 (2018).
Schelstraete, W., Devreese, M. & Croubels, S. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem. Toxicol. 137, 111140 (2020).
Dawson, H. D. et al. Structural and functional annotation of the porcine immunome. BMC Genomics 14, 332 (2013).
Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).
Clapperton, M., Glass, E. J. & Bishop, S. C. Pig peripheral blood mononuclear leucocyte subsets are heritable and genetically correlated with performance. Animal 2, 1575–1584 (2008).
Groenen, M. A. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).
Warr, A. et al. An improved pig reference genome sequence to enable pig genetics and genomics research. Gigascience 9, giaa051 (2020).
Kooij, V. et al. Sizing up models of heart failure: proteomics from flies to humans. Proteomics Clin. Appl. 8, 653–664 (2014).
Elnakish, M. T., Hassanain, H. H. & Janssen, P. M. Vascular remodeling-associated hypertension leads to left ventricular hypertrophy and contractile dysfunction in profilin-1 transgenic mice. J. Cardiovasc. Pharmacol. 60, 544–552 (2012).
Rafael-Fortney, J. A. et al. Early treatment with lisinopril and spironolactone preserves cardiac and skeletal muscle in Duchenne muscular dystrophy mice. Circulation 124, 582–588 (2011).
Müller, O. J. et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc. Res. 70, 70–78 (2006).
Su, H. et al. AAV serotype 1 mediates more efficient gene transfer to pig myocardium than AAV serotype 2 and plasmid. J. Gene Med. 10, 33–41 (2008).
Liu, S. et al. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci. Transl. Med. 13, eabd6892 (2021).
Costa, F. M. et al. Impact of ESC/ACCF/AHA/WHF universal definition of myocardial infarction on mortality at 10 years. Eur. Heart J. 33, 2544–2550 (2012).
Samsky, M. D. et al. Cardiogenic shock after acute myocardial infarction: a review. JAMA 326, 1840–1850 (2021).
Wang, X. et al. Stem cells for myocardial repair with use of a transarterial catheter. Circulation 120, S238–S246 (2009).
Inagaki, K. et al. Inhibition of delta-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation 108, 2304–2307 (2003).
Traxler, D. et al. Early elevation of systemic plasma clusterin after reperfused acute myocardial infarction in a preclinical porcine model of ischemic heart disease. Int. J. Mol. Sci. 21, 4591 (2020).
Vilahur, G. et al. Protective effects of ticagrelor on myocardial injury after infarction. Circulation 134, 1708–1719 (2016).
Crisostomo, V. et al. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells. Stem Cell Res. Ther. 10, 152 (2019).
Fernández-Jiménez, R. et al. Myocardial edema after ischemia/reperfusion is not stable and follows a bimodal pattern: imaging and histological tissue characterization. J. Am. Coll. Cardiol. 65, 315–323 (2015).
Malliaras, K. et al. Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation 128, 2764–2775 (2013).
Pulido, M. et al. Transcriptome profile reveals differences between remote and ischemic myocardium after acute myocardial infarction in a swine model. Biology 12, 340 (2023).
Trivella, M. G. et al. Percutaneous cardiac support during myocardial infarction drastically reduces mortality: perspectives from a swine model. Int. J. Artif. Organs 40, 338–344 (2017).
Delgado-Montero, A. et al. Blood stasis imaging predicts cerebral microembolism during acute myocardial infarction. J. Am. Soc. Echocardiogr. 33, 389–398 (2020).
Lim, M. et al. Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res. Ther. 9, 129 (2018).
Lubberding, A. F., Sattler, S. M., Flethøj, M., Tfelt-Hansen, J. & Jespersen, T. Comparison of hemodynamics, cardiac electrophysiology, and ventricular arrhythmia in an open- and a closed-chest porcine model of acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 318, H391–h400 (2020).
Malyar, N. M., Lerman, L. O., Gössl, M., Beighley, P. E. & Ritman, E. L. Relation of nonperfused myocardial volume and surface area to left ventricular performance in coronary microembolization. Circulation 110, 1946–1952 (2004).
Carlsson, M., Wilson, M., Martin, A. J. & Saeed, M. Myocardial microinfarction after coronary microembolization in swine: MR imaging characterization. Radiology 250, 703–713 (2009).
Kleinbongard, P. & Heusch, G. A fresh look at coronary microembolization. Nat. Rev. Cardiol. 19, 265–280 (2022).
Pascual Izco, M. et al. Ivabradine in acute heart failure: effects on heart rate and hemodynamic parameters in a randomized and controlled swine trial. Cardiol. J. 27, 62–71 (2020).
Rønning, L. et al. Opposite diastolic effects of omecamtiv mecarbil versus dobutamine and ivabradine co-treatment in pigs with acute ischemic heart failure. Physiol. Rep. 6, e13879 (2018).
Olivari, D. et al. Searching for preclinical models of acute decompensated heart failure: a concise narrative overview and a novel swine model. Cardiovasc. Drugs Ther. 36, 727–738 (2022).
Poss, K. D., Wilson, L. G. & Keating, M. T. Heart regeneration in zebrafish. Science 298, 2188–2190 (2002).
Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).
Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).
Cahill, T. J., Choudhury, R. P. & Riley, P. R. Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat. Rev. Drug. Discov. 16, 699–717 (2017).
Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).
Zhu, W. et al. Regenerative potential of neonatal porcine hearts. Circulation 138, 2809–2816 (2018).
Panchal, A. R. et al. 2019 American Heart Association focused update on advanced cardiovascular life support: use of advanced airways, vasopressors, and extracorporeal cardiopulmonary resuscitation during cardiac arrest: an update to the American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 140, e881–e894 (2019).
Hoogendoorn, A. et al. Variation in coronary atherosclerosis severity related to a distinct LDL (low-density lipoprotein) profile: findings from a familial hypercholesterolemia pig model. Arterioscler. Thromb. Vasc. Biol. 39, 2338–2352 (2019).
Denolin, H., Kuhn, H., Krayenbuehl, H. P., Loogen, F. & Reale, A. The definition of heart failure. Eur. Heart J. 4, 445–448 (1983).
McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).
Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e895–e1032 (2022).
Savarese, G., Stolfo, D., Sinagra, G. & Lund, L. H. Heart failure with mid-range or mildly reduced ejection fraction. Nat. Rev. Cardiol. 19, 100–116 (2022).
Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 17, 559–573 (2020).
Harjola, V. P. et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 19, 821–836 (2017).
Naar, J. et al. Acute severe heart failure reduces heart rate variability: an experimental study in a porcine model. Int. J. Mol. Sci. 24, 493 (2022).
Lacko, S. et al. Severe acute heart failure - experimental model with very low mortality. Physiol. Res. 67, 555–562 (2018).
Roche, E. T. et al. Soft robotic sleeve supports heart function. Sci. Transl. Med. 9, eaaf3925 (2017).
Tsao, C. W. et al. Heart Disease and Stroke Statistics-2022 Update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).
Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).
Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).
Khatibzadeh, S., Farzadfar, F., Oliver, J., Ezzati, M. & Moran, A. Worldwide risk factors for heart failure: a systematic review and pooled analysis. Int. J. Cardiol. 168, 1186–1194 (2013).
Sharp, T. E. 3rd et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J. Am. Coll. Cardiol. 72, 2609–2621 (2018).
Schuleri, K. H. et al. The adult Göttingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerative therapies. Comp. Med. 58, 568–579 (2008).
Sassoon, D. J. et al. Glucagon-like peptide 1 receptor activation augments cardiac output and improves cardiac efficiency in obese swine after myocardial infarction. Diabetes 66, 2230–2240 (2017).
Martínez-Milla, J. et al. Translational large animal model of hibernating myocardium: characterization by serial multimodal imaging. Basic Res. Cardiol. 115, 33 (2020).
Onohara, D. et al. Image-guided targeted mitral valve tethering with chordal encircling snares as a preclinical model of secondary mitral regurgitation. J. Cardiovasc. Transl. Res. 15, 653–665 (2022).
Watanabe, S., Bikou, O., Hajjar, R. J. & Ishikawa, K. Swine model of mitral regurgitation induced heart failure. Methods Mol. Biol. 1816, 327–335 (2018).
Möllmann, H. et al. Desynchronization: a novel model to induce heart failure. Thorac. Cardiovasc. Surg. 57, 441–448 (2009).
Pfeffer, M. A., Shah, A. M. & Borlaug, B. A. Heart failure with preserved ejection fraction in perspective. Circ. Res. 124, 1598–1617 (2019).
Olver, T. D. et al. Western diet-fed, aortic-banded Ossabaw swine: a preclinical model of cardio-metabolic heart failure. JACC Basic Transl. Sci. 4, 404–421 (2019).
Sharp, T. E. 3rd et al. Novel Göttingen miniswine model of heart failure with preserved ejection fraction integrating multiple comorbidities. JACC Basic Transl. Sci. 6, 154–170 (2021).
Charles, C. J. et al. A porcine model of heart failure with preserved ejection fraction: magnetic resonance imaging and metabolic energetics. ESC Heart Fail. 7, 92–102 (2020).
Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 29, 270–276 (2008).
Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).
Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020).
Jefferies, J. L. & Towbin, J. A. Dilated cardiomyopathy. Lancet 375, 752–762 (2010).
Argulian, E., Sherrid, M. V. & Messerli, F. H. Misconceptions and facts about hypertrophic cardiomyopathy. Am. J. Med. 129, 148–152 (2016).
Marian, A. J. & Braunwald, E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 121, 749–770 (2017).
Maron, B. J. & Maron, M. S. Hypertrophic cardiomyopathy. Lancet 381, 242–255 (2013).
del Rio, C. L. et al. Abstract 20770: a novel mini-pig genetic model of hypertrophic cardiomyopathy: altered myofilament dynamics, hyper-contractility, and impaired systolic/diastolic functional reserve in vivo. Circulation 136, A20770 (2017).
Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).
von der Ecken, J., Heissler, S. M., Pathan-Chhatbar, S., Manstein, D. J. & Raunser, S. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. Nature 534, 724–728 (2016).
Sewanan, L. R. et al. Extracellular matrix from hypertrophic myocardium provokes impaired twitch dynamics in healthy cardiomyocytes. JACC Basic Transl. Sci. 4, 495–505 (2019).
Montag, J. et al. Successful knock-in of hypertrophic cardiomyopathy-mutation R723G into the MYH7 gene mimics HCM pathology in pigs. Sci. Rep. 8, 4786 (2018).
Kraft, T. et al. Familial hypertrophic cardiomyopathy: functional effects of myosin mutation R723G in cardiomyocytes. J. Mol. Cell. Cardiol. 57, 13–22 (2013).
McKenna, W. J. & Judge, D. P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 18, 22–36 (2021).
Marsman, E. M. J., Postema, P. G. & Remme, C. A. Brugada syndrome: update and future perspectives. Heart 108, 668–675 (2022).
Park, D. S. et al. Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Invest. 125, 403–412 (2015).
Schneider, J. W. et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat. Med. 26, 1788–1800 (2020).
Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).
Farrar, D. J., Chow, E. & Brown, C. D. Isolated systolic and diastolic ventricular interactions in pacing-induced dilated cardiomyopathy and effects of volume loading and pericardium. Circulation 92, 1284–1290 (1995).
Schroeder, M. A. et al. Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur. J. Heart Fail. 15, 130–140 (2013).
Saito, Y. et al. Direct epicardial assist device using artificial rubber muscle in a swine model of pediatric dilated cardiomyopathy. Int. J. Artif. Organs 38, 588–594 (2015).
Tanaka, Y. et al. Diffuse fibrosis leads to a decrease in unipolar voltage: validation in a swine model of premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 13, 547–554 (2016).
Hirai, K. et al. Cardiosphere-derived exosomal microRNAs for myocardial repair in pediatric dilated cardiomyopathy. Sci. Transl. Med. 12, eabb3336 (2020).
Crespo-Leiro, M. G. et al. Heart transplantation: focus on donor recovery strategies, left ventricular assist devices, and novel therapies. Eur. Heart J. 43, 2237–2246 (2022).
Russo, M. J. et al. The effect of ischemic time on survival after heart transplantation varies by donor age: an analysis of the United Network for Organ Sharing database. J. Thorac. Cardiovasc. Surg. 133, 554–559 (2007).
Thomas, S. S. & D’Alessandro, D. A. Traumatic brains and broken hearts: mending the donor shortage in cardiac transplantation. J. Am. Coll. Cardiol. 70, 1259–1261 (2017).
Pahuja, M., Case, B. C., Molina, E. J. & Waksman, R. Overview of the FDA’s Circulatory System Devices Panel virtual meeting on the TransMedics Organ Care System (OCS) Heart—portable extracorporeal heart perfusion and monitoring system. Am. Heart J. 247, 90–99 (2022).
Ardehali, A. et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 385, 2577–2584 (2015).
García Sáez, D. et al. Ex vivo heart perfusion after cardiocirculatory death; a porcine model. J. Surg. Res. 195, 311–314 (2015).
Mohiuddin, M. M., Reichart, B., Byrne, G. W. & McGregor, C. G. A. Current status of pig heart xenotransplantation. Int. J. Surg. 23, 234–239 (2015).
Zhu, Y. et al. The Stanford experience of heart transplantation over five decades. Eur. Heart J. 42, 4934–4943 (2021).
Pepper, J. R., Khagani, A. & Yacoub, M. Heart transplantation. J. Antimicrob. Chemother. 36, 23–38 (1995).
Singh, T. P. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-fourth pediatric heart transplantation report - 2021; focus on recipient characteristics. J. Heart Lung Transplant. 40, 1050–1059 (2021).
Stehlik, J. et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. J. Heart Lung Transplant. 31, 1052–1064 (2012).
Messer, S. et al. Human heart transplantation from donation after circulatory-determined death donors using normothermic regional perfusion and cold storage. J. Heart Lung Transplant. 37, 865–869 (2018).
Gao, S. Z. et al. Prevalence of accelerated coronary artery disease in heart transplant survivors. Comparison of cyclosporine and azathioprine regimens. Circulation 80, Iii100–Iii105 (1989).
Madariaga, M. L. et al. Induction of cardiac allograft tolerance across a full MHC barrier in miniature swine by donor kidney cotransplantation. Am. J. Transplant. 13, 2558–2566 (2013).
Yamada, K. et al. The effect of thymectomy on tolerance induction and cardiac allograft vasculopathy in a miniature swine heart/kidney transplantation model. Transplantation 68, 485–491 (1999).
Schwarze, M. L. et al. Effects of mycophenolate mofetil on cardiac allograft survival and cardiac allograft vasculopathy in miniature swine. Ann. Thorac. Surg. 80, 1787–1793 (2005).
Madsen, J. C., Sachs, D. H., Fallon, J. T. & Weissman, N. J. Cardiac allograft vasculopathy in partially inbred miniature swine. I. Time course, pathology, and dependence on immune mechanisms. J. Thorac. Cardiovasc. Surg. 111, 1230–1239 (1996).
Sachs, D. H. et al. Transplantation in miniature swine. I. Fixation of the major histocompatibility complex. Transplantation 22, 559–567 (1976).
Badiwala, M. V. et al. Donor pretreatment with hypertonic saline attenuates primary allograft dysfunction: a pilot study in a porcine model. Circulation 120, S206–S214 (2009).
Ribeiro, R. V. P., Badiwala, M. V., Ramzy, D., Tumiati, L. C. & Rao, V. Recipient hypertonic saline infusion prevents cardiac allograft dysfunction. J. Thorac. Cardiovasc. Surg. 157, 615–625.e1 (2019).
Watson, A. J. et al. Enhanced preservation of pig cardiac allografts by combining erythropoietin with glyceryl trinitrate and zoniporide. Am. J. Transplant. 13, 1676–1687 (2013).
Grant, A. A. et al. In vivo resuscitation, perfusion, and transplantation of a porcine cardiac allograft donated after circulatory death. J. Card. Surg. 35, 300–303 (2020).
Cooper, D. K. C. & Pierson, R. N. 3rd The future of cardiac xenotransplantation. Nat. Rev. Cardiol. 19, 281–282 (2022).
Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022).
Singh, A. K. et al. Cardiac xenotransplantation: progress in preclinical models and prospects for clinical translation. Transpl. Int. 35, 10171 (2022).
Phelps, C. J. et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414 (2003).
Kuwaki, K. et al. Heart transplantation in baboons using α1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat. Med. 11, 29–31 (2005).
Tector, A. J., Mosser, M., Tector, M. & Bach, J. M. The possible role of anti-Neu5Gc as an obstacle in xenotransplantation. Front. Immunol. 11, 622 (2020).
Byrne, G., Ahmad-Villiers, S., Du, Z. & McGregor, C. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen. Xenotransplantation 25, e12394 (2018).
Lutz, A. J. et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20, 27–35 (2013).
McGregor, C. G. et al. Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts. Transplantation 93, 686–692 (2012).
Iwase, H. et al. Pig-to-baboon heterotopic heart transplantation–exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation 22, 211–220 (2015).
Mohiuddin, M. M. et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat. Commun. 7, 11138 (2016).
Abicht, J. M. et al. Multiple genetically modified GTKO/hCD46/HLA-E/hβ2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood. Xenotransplantation 25, e12390 (2018).
Chan, J. L. et al. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation 24, e12330 (2017).
Khush, K. K. et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: 37th adult heart transplantation report-2020; focus on deceased donor characteristics. J. Heart Lung Transplant. 39, 1003–1015 (2020).
Salter, B. S. et al. Temporary mechanical circulatory support devices: practical considerations for all stakeholders. Nat. Rev. Cardiol. 20, 263–277 (2023).
Vincent, F. et al. Arterial pulsatility and circulating von Willebrand factor in patients on mechanical circulatory support. J. Am. Coll. Cardiol. 71, 2106–2118 (2018).
Sonntag, S. J. et al. Virtual implantations to transition from porcine to bovine animal models for a total artificial heart. Artif. Organs 44, 384–393 (2020).
Lawton, J. S. et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e4–e17 (2022).
Hocum Stone, L. L. et al. Magnetic resonance imaging assessment of cardiac function in a swine model of hibernating myocardium 3 months following bypass surgery. J. Thorac. Cardiovasc. Surg. 153, 582–590 (2017).
Itoda, Y. et al. Novel anastomotic device for distal coronary anastomosis: preclinical results from swine off-pump coronary artery bypass model. Ann. Thorac. Surg. 101, 736–741 (2016).
Hocum Stone, L. et al. Cardiac strain in a swine model of regional hibernating myocardium: effects of CoQ10 on contractile reserve following bypass surgery. J. Cardiovasc. Transl. Res. 9, 368–373 (2016).
Hocum Stone, L. L. et al. Recovery of hibernating myocardium using stem cell patch with coronary bypass surgery. J. Thorac. Cardiovasc. Surg. 162, e3–e16 (2021).
Veres, G. et al. Is internal thoracic artery resistant to reperfusion injury? Evaluation of the storage of free internal thoracic artery grafts. J. Thorac. Cardiovasc. Surg. 156, 1460–1469 (2018).
Tomášek, P. et al. Histological mapping of porcine carotid arteries—an animal model for the assessment of artificial conduits suitable for coronary bypass grafting in humans. Ann. Anat. 228, 151434 (2020).
Grajciarová, M. et al. Are ovine and porcine carotid arteries equivalent animal models for experimental cardiac surgery: a quantitative histological comparison. Ann. Anat. 242, 151910 (2022).
Garoffolo, G. et al. Coronary artery mechanics induces human saphenous vein remodelling via recruitment of adventitial myofibroblast-like cells mediated by Thrombospondin-1. Theranostics 10, 2597–2611 (2020).
Dahan, N. et al. Dynamic autologous reendothelialization of small-caliber arterial extracellular matrix: a preclinical large animal study. Tissue Eng. Part A 23, 69–79 (2017).
Fukushima, S. et al. A reproducible swine model of a surgically created saccular thoracic aortic aneurysm. Exp. Anim. 70, 257–263 (2021).
Takano, T., Katada, Y., Komaki, N., Onozawa, S. & Yokoyama, H. A technique for creating an experimental type Ia endoleak model in the thoracic aorta of swine. Jpn. J. Radiol. 39, 1127–1132 (2021).
Argenta, R., Perini, S. C. & Pereira, A. H. Thoracic aortic aneurysm. An experimental model in pigs. Acta Cir. Bras. 36, e360602 (2021).
Boufi, M. et al. Endovascular creation and validation of acute in vivo animal model for type A aortic dissection. J. Surg. Res. 225, 21–28 (2018).
Lugenbiel, P. et al. Atrial myofibroblast activation and connective tissue formation in a porcine model of atrial fibrillation and reduced left ventricular function. Life Sci. 181, 1–8 (2017).
Boulate, D. et al. Induction and phenotyping of acute right heart failure in a large animal model of chronic thromboembolic pulmonary hypertension. J. Vis. Exp. 181, e58057 (2022).
Christiansen, J. G. et al. Systemic inflammatory response and local cytokine expression in porcine models of endocarditis. Apmis 122, 292–300 (2014).
Cruz, F. M. et al. Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. J. Am. Coll. Cardiol. 65, 1438–1450 (2015).
Acknowledgements
This work was supported by the National Natural Science Fund for Distinguished Young Scholars of China (82125004; to J.S.) and the Frontier Biotechnology Key Project of National Key R & D Program of the Ministry of Science and Technology of China (2023YFC3404300; to J.S.).
Author information
Authors and Affiliations
Contributions
J.S. contributed to the article’s conceptualization. H.J. was instrumental in drafting and revising the manuscript. Y.C. was responsible for drafting the manuscript and designing the figure.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Lab Animal thanks Verónica Crisóstomo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jia, H., Chang, Y. & Song, J. The pig as an optimal animal model for cardiovascular research. Lab Anim 53, 136–147 (2024). https://doi.org/10.1038/s41684-024-01377-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41684-024-01377-4