Abstract
Feelings are mental experiences of body states. They signify physiological need (for example, hunger), tissue injury (for example, pain), optimal function (for example, well-being), threats to the organism (for example, fear or anger) or specific social interactions (for example, compassion, gratitude or love). Feelings constitute a crucial component of the mechanisms of life regulation, from simple to complex. Their neural substrates can be found at all levels of the nervous system, from individual neurons to subcortical nuclei and cortical regions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Plato. Symposium (Kessinger, 2010).
Heaton, K. W. Body-conscious Shakespeare: sensory disturbances in troubled characters. Med. Humanit. 37, 97–102 (2011).
Morrisj, J. S. How do you feel? Trends Cogn. Sci. 6, 317–319 (2002).
Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev. Neurosci. 3, 655–666 (2002).
Damasio, A. Self Comes to Mind: Constructing the Conscious Brain (Pantheon, 2010; Vintage, 2011).
Ortony, A. & Turner, T. J. What's basic about basic emotions? Psychol. Rev. 97, 315–331 (1990).
Sorensen, L. B., Moller, P., Flint, A., Martens, M. & Raben, A. Effect of sensory perception of foods on appetite and food intake: a review of studies on humans. Int. J. Obes. 27, 1152–1166 (2003).
DeWall, C. N. & Baumeister, R. F. Alone but feeling no pain: effects of social exclusion on physical pain tolerance and pain threshold, affective forecasting, and interpersonal empathy. J. Pers. Soc. Psychol. 91, 1–15 (2006).
Frijda, N. H., Kuipers, P. & ter Schure, E. Relations among emotion, appraisal, and emotional action readiness. J. Pers. Soc. Psychol. 57, 212–228 (1989).
Wicker, B. et al. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40, 655–664 (2003).
Schnall, S., Haidt, J., Clore, G. L. & Jordan, A. H. Disgust as embodied moral judgment. Pers. Soc. Psychol. Bull. 34, 1096–1109 (2008).
Goetz, J. L., Keltner, D. & Simon-Thomas, E. Compassion: an evolutionary analysis and empirical review. Psychol. Bull. 136, 351–374 (2010).
Keltner, D., Ellsworth, P. C. & Edwards, K. Beyond simple pessimism: effects of sadness and anger on social perception. J. Pers Soc. Psychol. 64, 740–752 (1993).
Algoe, S. B. & Haidt, J. Witnessing excellence in action: the 'other-praising' emotions of elevation, gratitude, and admiration. J. Posit. Psychol. 4, 105–127 (2009).
Kringelbach, M. L. & Berridge, K. C. Pleasures of the Brain (Oxford Univ. Press, 2009).
James, W. The Principles of Psychology (Henry Holt and Company, 1890).
Damasio, A. The Feeling of What Happens: Body and Emotion in the Making of Consciousness (Harcourt, 1999).
Hohmann, G. W. Some effects of spinal cord lesions on experienced emotional feelings. Psychophysiology 3, 143–156 (1966).
Wiens, S., Mezzacappa, E. S. & Katkin, E. S. Heartbeat detection and the experience of emotions. Cogn. Emotion 14, 417–427 (2000).
Montoya, P. & Schandry, R. Emotional experience and heartbeat perception in patients with spinal cord injury and control subjects. J. Psychophysiol. 8, 289–296 (1994).
Kandel, E. R., Schwartz, J. H. & Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J. Principles of Neural Science 5th edn (The McGraw-Hill Companies, 2012).
Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol. 71, 856–867 (2012).
Gao, X. W., Podladchikova, L., Shaposhnikov, D., Hong, K. & Shevtsova, N. Recognition of traffic signs based on their colour and shape features extracted using human vision models. J. Vis. Commun. Image R. 17, 675–685 (2006).
Lowe, D. G. Object recognition from local scale-invariant features. in Proc. of the Seventh IEEE International Conference on Computer Vision Vol. 2 1150–1157 (IEEE, 1999).
Allman, J. M. & Kaas, J. H. A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 31, 85–105 (1971).
Evans, E. F., Ross, H. F. & Whitfield, I. C. The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J. Physiol. 179, 238–247 (1965).
Roe, A. W., Pallas, S. L., Hahm, J. O. & Sur, M. A map of visual space induced in primary auditory cortex. Science 250, 818–820 (1990).
Udin, S. B. & Fawcett, J. W. Formation of topographic maps. Annu. Rev. Neurosci. 11, 289–327 (1988).
Taylor, L. A. & Rachman, S. J. The effects of blood sugar level changes on cognitive function, affective state, and somatic symptoms. J. Behav. Med. 11, 279–291 (1988).
Scammell, T. E. & Winrow, C. J. Orexin receptors: pharmacology and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 51, 243–266 (2011).
Wardle, J. Hunger and satiety: a multidimensional assessment of responses to caloric loads. Physiol. Behav. 40, 577–582 (1987).
Monello, L. F. & Mayer, J. Hunger and satiety sensations in men, women, boys, and girls. Am. J. Clin. Nutr. 20, 253–261 (1967).
Czura, C. J. & Tracey, K. J. Autonomic neural regulation of immunity. J. Intern. Med. 257, 156–166 (2005).
Bauer, R. M. Autonomic recognition of names and faces in prosopagnosia: a neuropsychological application of the Guilty Knowledge Test. Neuropsychologia 22, 457–469 (1984).
Craig, A. D. A new view of pain as a homeostatic emotion. Trends Neurosci. 26, 303–307 (2003).
Porges, S. W. Neuroception: a subconscious system for detecting threats and safety. Zero Three 24, 19–24 (2004).
Ekman, P., Levenson, R. W. & Friesen, W. V. Autonomic nervous system activity distinguishes among emotions. Science 221, 1208–1210 (1983).
Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1295 (1997).
Gabella, G. Encyclopedia of Life Sciences (John Wiley & Sons, 2001).
Tranel, D. & Damasio, A. R. Knowledge without awareness: an autonomic index of facial recognition by prosopagnosics. Science 228, 1453–1454 (1985).
Damasio, A. Looking for Spinoza: Joy, Sorrow, and the Feeling Brain (Harcourt, 2003).
Panksepp, J. Affective Neuroscience: The Foundations of Human and Animal Emotions (Oxford Univ. Press, 1998).
Denton, D. A. The Primordial Emotions: The Dawning of Consciousness (Oxford Univ. Press, 2005).
Cannon, W. B. The Wisdom of the Body. (W. W. Norton & Co, 1932).
Damasio, A. Neural basis of emotions. Scholarpedia 6, 1804 (2011).
Wright, R. The Moral Animal: The New Science of Evolutionary Psychology (Pantheon/Vintage, 1994).
Sanabria, F. Tools, drugs, and signals in the road from evolution to money. Behav. Brain Sci. 29, 193–194 (2012).
Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21, 34–38 (2011).
Blair, R. J. Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J. Neurol. Neurosurg. Psychiatry 71, 727–731 (2001).
Fanselow, M. S. Conditioned fear-induced opiate analgesia: a competing motivational state theory of stress analgesia. Ann. NY Acad. Sci. 467, 40–54 (1986).
Kalin, N. H., Shelton, S. E. & Davidson, R. J. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J. Neurosci. 24, 5506–5515 (2004).
Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, 669–672 (1994).
LeDoux, J. E. Emotion: clues from the brain. Annu. Rev. Psychol. 46, 209–235 (1995).
Maclennan, B. Protophenomena and their neurodynamical correlates. J. Conscious. Stud. 3, 409–424 (1996).
Crick, F. H. C. The Astonishing Hypothesis: The Scientific Search for the Soul (Charles Scribner's Sons, 1994).
Llinás, R. R. I of the Vortex: From Neurons to Self (MIT Press, 2001).
Pessoa, L. How do emotion and motivation direct executive control? Trends Cogn. Sci. 13, 160–166 (2009).
Damasio, A. et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neurosci. 3, 1049–1056 (2000).
Lang, P. J. & Davis, M. Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog. Brain Res. 156, 3–29 (2006).
Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009).
Parvizi, J. & Damasio, A. Consciousness and the brainstem. Cognition 79, 135–160 (2001).
Risold, P. Y., Thompson, R. H. & Swanson, L. W. The structural organization of connections between hypothalamus and cerebral cortex. Brain Res. Brain Res. Rev. 24, 197–254 (1997).
Buhle, J. T. et al. Common representation of pain and negative emotion in the midbrain periaqueductal gray. Soc. Cogn. Affect. Neurosci. 24 Mar 2012 (doi:10.1093/scan/nss038).
Farkas, E., Jansen, A. S. & Loewy, A. D. Periaqueductal gray matter projection to vagal preganglionic neurons and the nucleus tractus solitarius. Brain Res. 764, 257–261 (1997).
Hamilton, B. L. Projections of the nuclei of the periaqueductal gray matter in the cat. J. Comp. Neurol. 152, 45–58 (1973).
Herbert, H. & Saper, C. B. Cholecystokinin-, galanin-, and corticotropin-releasing factor-like immunoreactive projections from the nucleus of the solitary tract to the parabrachial nucleus in the rat. J. Comp. Neurol. 293, 581–598 (1990).
Herbert, H., Moga, M. M. & Saper, C. B. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J. Comp. Neurol. 293, 540–580 (1990).
Bester, H., Besson, J. M. & Bernard, J. F. Organization of efferent projections from the parabrachial area to the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J. Comp. Neurol. 383, 245–281 (1997).
Ricardo, J. A. & Koh, E. T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153, 1–26 (1978).
Cameron, O. G. Interoception: the inside story—a model for psychosomatic processes. Psychosom. Med. 63, 697–710 (2001).
Keay, K. A., Clement, C. I., Owler, B., Depaulis, A. & Bandler, R. Convergence of deep somatic and visceral nociceptive information onto a discrete ventrolateral midbrain periaqueductal gray region. Neuroscience 61, 727–732 (1994).
Rinaman, L. Interoceptive stress activates glucagon-like peptide-1 neurons that project to the hypothalamus. Am. J. Physiol. 277, R582–R590 (1999).
Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).
Damasio, A. Descartes' Error: Emotion, Reason, and the Human Brain (Penguin, 2005).
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).
Dum, R. P., Levinthal, D. J. & Strick, P. L. The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29, 14223–14235 (2009).
Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Rev. Neurosci. 12, 154–167 (2011).
Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neurosci. 5, 900–904 (2002).
Craig, A. D. A new version of the thalamic disinhibition hypothesis of central pain. Pain Forum 7, 1–14 (1998).
Craig, A. D. Propriospinal input to thoracolumbar sympathetic nuclei from cervical and lumbar lamina I neurons in the cat and the monkey. J. Comp. Neurol. 331, 517–530 (1993).
Craig, A. D. Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J. Comp. Neurol. 361, 225–248 (1995).
Craig, A. D. An ascending general homeostatic afferent pathway originating in lamina I. Prog. Brain Res. 107, 225–242 (1996).
Craig, A. D. The functional anatomy of lamina I and its role in post-stroke central pain. Prog. Brain Res. 129, 137–151 (2000).
Craig, A. D., Chen, K., Bandy, D. & Reiman, E. M. Thermosensory activation of insular cortex. Nature Neurosci. 3, 184–190 (2000).
Beckstead, R. M. & Norgren, R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J. Comp. Neurol. 184, 455–472 (1979).
Kalia, M. & Mesulam, M. M. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J. Comp. Neurol. 193, 435–465 (1980).
Kalia, M. & Mesulam, M. M. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J. Comp. Neurol. 193, 467–508 (1980).
Shapiro, R. E. & Miselis, R. R. The central neural connections of the area postrema of the rat. J. Comp. Neurol. 234, 344–364 (1985).
Klop, E. M., Mouton, L. J., Hulsebosch, R., Boers, J. & Holstege, G. In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience 134, 189–197 (2005).
Krukoff, T. L., Harris, K. H. & Jhamandas, J. H. Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res. Bull. 30, 163–172 (1993).
Mantyh, P. W. Connections of midbrain periaqueductal gray in the monkey. II. Descending efferent projections. J. Neurophysiol. 49, 582–594 (1983).
Karimnamazi, H. & Travers, J. B. Differential projections from gustatory responsive regions of the parabrachial nucleus to the medulla and forebrain. Brain Res. 813, 283–302 (1998).
Klier, E. M., Wang, H. & Crawford, J. D. The superior colliculus encodes gaze commands in retinal coordinates. Nature Neurosci. 4, 627–632 (2001).
Stein, B. E. Development of the superior colliculus. Annu. Rev. Neurosci. 7, 95–125 (1984).
Huerta, M. F. & Harting, J. K. Connectional organization of the superior colliculus. Trends Neurosci. 7, 286–289 (1984).
May, P. J. The mammalian superior colliculus: laminar structure and connections. Prog. Brain Res. 151, 321–378 (2006).
Wurtz, R. H. & Albano, J. E. Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3, 189–226 (1980).
Zenon, A. & Krauzlis, R. J. Attention deficits without cortical neuronal deficits. Nature 489, 434–437 (2012).
Strehler, B. L. Where is the self? A neuroanatomical theory of consciousness. Synapse 7, 44–91 (1991).
Brooks, J. C. Nurmikko, T. J., Bimson, W. E., Singh, K. D. & Roberts, N. fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 15, 293–301 (2002).
Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J. Comp. Neurol. 212, 1–22 (1982).
Mufson, E. J. & Mesulam, M. M. Insula of the old world monkey. II: Afferent cortical input and comments on the claustrum. J. Comp. Neurol. 212, 23–37 (1982).
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A. & Dolan, R. J. Neural systems supporting interoceptive awareness. Nature Neurosci. 7, 189–195 (2004).
Stephan, E. et al. Functional neuroimaging of gastric distention. J. Gastrointest. Surg. 7, 740–749 (2003).
Phillips, M. L. et al. The effect of negative emotional context on neural and behavioural responses to oesophageal stimulation. Brain 126, 669–684 (2003).
Kong, J. et al. Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum. Brain Mapp. 27, 715–721 (2006).
Singer, T. et al. Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–1162 (2004).
Henderson, L. A., Gandevia, S. C. & Macefield, V. G. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain 128, 20–30 (2007).
Hennenlotter, A. et al. A common neural basis for receptive and expressive communication of pleasant facial affect. Neuroimage 26, 581–591 (2005).
Jabbi, M., Swart, M. & Keysers, C. Empathy for positive and negative emotions in the gustatory cortex. Neuroimage 34, 1744–1753 (2007).
Craig, A. D. Significance of the insula for the evolution of human awareness of feelings from the body. Ann. NY Acad. Sci. 1225, 72–82 (2011).
Merker, B. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav. Brain Sci. 30, 63–81 (2007).
Shewmon, D. A., Holmes, G. L. & Byrne, P. A. Consciousness in congenitally decorticate children: developmental vegetative state as self-fulfilling prophecy. Dev. Med. Child Neurol. 41, 364–374 (1999).
Damasio, A., Damasio, H. & Tranel, D. Persistence of feelings and sentience after bilateral damage of the insula. Cereb. Cortex 3 Apr 2012 (doi:10.1093/cercor/bhs077).
Plum, F. & Posner, J. B. The Diagnosis of Stupor and Coma (Contemporary Neurology Vol.10) (Oxford Univ. Press, 1972).
Parvizi, J. & Damasio, A. R. Neuroanatomical correlates of brainstem coma. Brain 126, 1524–1536 (2003).
Panksepp, J. The basic emotional circuits of mammalian brains: do animals have affective lives? Neurosci. Biobehav Rev. 35, 1791–1804 (2011).
Bejjani, B. P. et al. Transient acute depression induced by high-frequency deep-brain stimulation. N. Engl. J. Med. 340, 1476–1480 (1999).
Schmahmann, J. D. & Leifer, D. Parietal pseudothalamic pain syndrome. Clinical features and anatomic correlates. Arch. Neurol. 49, 1032–1037 (1992).
Greenspan, J. D. & Winfield, J. A. Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain 50, 29–39 (1992).
Harrison, N. A., Gray, M. A., Gianaros, P. J. & Critchley, H. D. The embodiment of emotional feelings in the brain. J. Neurosci. 30, 12878–12884 (2010).
Piche, M., Arsenault, M. & Rainville, P. Dissection of perceptual, motor and autonomic components of brain activity evoked by noxious stimulation. Pain 149, 453–462 (2010).
Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain 34, 102–254 (1911).
Mori, E. & Yamadori, A. Rejection behaviour: a human homologue of the abnormal behaviour of Denny-Brown and Chambers' monkey with bilateral parietal ablation. J. Neurol. Neurosurg. Psychiatry 52, 1260–1266 (1989).
Denny-Brown, D. & Chambers, R. A. The parietal lobe and behavior. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 36, 35–117 (1958).
Steiner, J. E., Glaser, D., Hawilo, M. E. & Berridge, K. C. Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci. Biobehav. Rev. 25, 53–74 (2001).
Cook, N. D. The neuron-level phenomena underlying cognition and consciousness: synaptic activity and the action potential. Neuroscience 153, 556–570 (2008).
Murinson, B. B. & Griffin, J. W. C-fiber structure varies with location in peripheral nerve. J. Neuropathol. Exp. Neurol. 63, 246–254 (2004).
Harper, A. A. & Lawson, S. N. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J. Physiol. 359, 31–46 (1985).
Foley, J. O. & DuBois, F. S. Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers. J. Comp. Neurol. 67, 49–67 (2004).
Hoffman, H. H. & Schnitzlein, H. N. The numbers of nerve fibers in the vagus nerve of man. Anat. Rec. 139, 429–435 (1961).
Friede, R. L. & Samorajski, T. Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. J. Comp. Neurol. 130, 223–231 (1967).
Prechtl, J. C. & Powley, T. L. The fiber composition of the abdominal vagus of the rat. Anat. Embryol. (Berl.) 181, 101–115 (1990).
Koch, S. L. The structure of the third, fourth, fifth, sixth, ninth, eleventh and twelfth cranial nerves. J. Comp. Neurol. 26, 541–552 (1916).
Vallbo, A. B., Olausson, H. & Wessberg, J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 81, 2753–2763 (1999).
Mantyh, P. W. The midbrain periaqueductal gray in the rat, cat, and monkey: a Nissl, Weil, and Golgi analysis. J. Comp. Neurol. 204, 349–363 (1982).
Miller, A. J., McKoon, M., Pinneau, M. & Silverstein, R. Postnatal synaptic development of the rat. Brain Res. 284, 205–213 (1983).
Leslie, R. A. Comparative aspects of the area postrema: fine-structural considerations help to determine its function. Cell. Mol. Neurobiol. 6, 95–120 (1986).
Hartline, D. K. & Colman, D. R. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 17, R29–R35 (2007).
Waxman, S. G. Conduction in myelinated, unmyelinated, and demyelinated fibers. Arch. Neurol. 34, 585–589 (1977).
Harris, J. J. & Attwell, D. The energetics of CNS white matter. J. Neurosci. 32, 356–371 (2012).
Lee, S. et al. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nature Methods 9, 917–922 (2012).
Bokil, H., Laaris, N., Blinder, K., Ennis, M. & Keller, A. Ephaptic interactions in the mammalian olfactory system. J. Neurosci. 21, RC173 (2001).
Meyer, R. A., Raja, S. N. & Campbell, J. N. Coupling of action potential activity between unmyelinated fibers in the peripheral nerve of monkey. Science 227, 184–187 (1985).
Eng, D. L. & Kocsis, J. D. Activity-dependent changes in extracellular potassium and excitability in turtle olfactory nerve. J. Neurophysiol. 57, 740–754 (1987).
Kamermans, M. & Fahrenfort, I. Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina. Curr. Opin. Neurobiol. 14, 531–541 (2004).
Moller, A. R. Hemifacial spasm: ephaptic transmission or hyperexcitability of the facial motor nucleus? Exp. Neurol. 98, 110–119 (1987).
Rasminsky, M. Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice. J. Physiol. 305, 151–169 (1980).
Crochet, S. & Petersen, C. C. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci. 9, 608–610 (2006).
Aur, D. Connolly, C. I. & Jog, M. S. Computing information in neural spikes. Neural Process. Lett. 23, 183–199 (2006).
Pearce, T., Verschure, P., White, J. & Kauer, J. Robust stimulus encoding in olfactory processing: hyperacuity and efficient signal transmission. Lect. Notes Comput. Sci. 2036, 461–479 (2001).
Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).
Lang, P. M. et al. Characterization of neuronal nicotinic acetylcholine receptors in the membrane of unmyelinated human C-fiber axons by in vitro studies. J. Neurophysiol. 90, 3295–3303 (2003).
Lang, P. M., Tracey, D. J., Irnich, D., Sippel, W. & Grafe, P. Activation of adenosine and P2Y receptors by ATP in human peripheral nerve. Naunyn Schmiedebergs Arch. Pharmacol. 366, 449–457 (2002).
Irnich, D., Tracey, D. J., Polten, J., Burgstahler, R. & Grafe, P. ATP stimulates peripheral axons in human, rat and mouse — differential involvement of A2B adenosine and P2X purinergic receptors. Neuroscience 110, 123–129 (2002).
Lang, P. M., Moalem-Taylor, G., Tracey, D. J., Bostock, H. & Grafe, P. Activity-dependent modulation of axonal excitability in unmyelinated peripheral rat nerve fibers by the 5-HT3 serotonin receptor. J. Neurophysiol. 96, 2963–2971 (2006).
Lang, P. M. & Grafe, P. Chemosensitivity of unmyelinated axons in isolated human gastric vagus nerve. Auton. Neurosci. 136, 100–104 (2007).
Engel, A. K., Fries, P., Konig, P., Brecht, M. & Singer, W. Temporal binding, binocular rivalry, and consciousness. Consci. Cogn. 8, 128–151 (1999).
Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65, 111–125 (1999).
Gybels, J., Handwerker, H. O. & Van Hees, J. A comparison between the discharges of human nociceptive nerve fibres and the subject's ratings of his sensations. J. Physiol. 292, 193–206 (1979).
Maslow, A. H. A theory of human motivation. Psychol. Rev. 50, 370–396 (1943).
Berridge, K. C. Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–209 (2004).
Immordino-Yang, M. H., McColl, A., Damasio, H. & Damasio, A. Neural correlates of admiration and compassion. Proc. Natl Acad. Sci. USA 106, 8021–8026 (2012).
Keltner, D & Buswell, B. N. Evidence for the distinctness of embarrassment, shame, and guilt: a study of recalled antecedents and facial expressions of emotion. Cogn. Emot. 10, 155–172 (1996).
Ekman, P. & Friesen, W. V. Constants across cultures in the face and emotion. J. Pers Soc. Psychol. 17, 124–129 (1971).
LeDoux, J. E. The Emotional Brain: The Mysterious Underpinnings of Emotional Life (Simon & Schuster, 1996).
Acknowledgements
This work was supported by grants to A.D. from the US National Institute of Neurological Disorders and Stroke (P50 NS19632) and The Mathers Foundation. We thank our colleagues H. Damasio, K. Man and J. Monterosso for insightful discussions and comments on the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Action programmes
-
A set of innate physiological actions triggered by changes in the internal or external environments and aimed at maintaining or restoring homeostatic balance. The actions include changes in viscera and internal milieu (for example, alterations in heart rate, breathing and hormonal secretion), striated muscle (for example, facial expressions and running) and cognition (for example, focusing attention and favouring certain ideas and modes of thinking). Action programmes include drives and emotions. Changes in body state resulting from an action programme are sensed by the interoceptive system, displayed in sensory maps of the body and may be experienced consciously as feelings.
- Drive
-
An action programme that is aimed at satisfying a basic, instinctual physiological need. Examples include hunger, thirst, libido, exploration and play, care of progeny and attachment to mates.
- Emotions
-
Action programmes largely triggered by external stimuli (perceived or recalled). Examples include disgust, fear, anger, sadness, joy, shame, contempt, pride, compassion and admiration.
- Ephaptic transmission
-
Sideways interneuronal communication that is mediated by extracellular current flow.
- Feelings
-
The mental experiences that accompany body states. Action programmes (drives and emotions) can elicit feelings. Experiences related to exteroceptive senses (vision, hearing, touch, taste and smell) commonly cause emotions and ensuing feelings but in general are not felt in and of themselves. This definition also excludes the use of 'feeling' in the sense of 'thinking' or 'intuiting'.
- Homeostasis
-
The process of maintaining the internal milieu physiological parameters (such as temperature, pH and nutrient levels) of a biological system within the range that facilitates survival and optimal function.
- Interoceptive system
-
A collection of nerve pathways and CNS nuclei dedicated to detecting and mapping homeostatic signals (such as degrees of visceral muscle contraction and internal milieu chemical composition). The main interoceptive pathways are the vagus nerve and the lamina I (spinothalamocortical) pathway. The interoceptive system monitors the state of the body, orchestrates responses thereto and has a central role in generating feelings.
Rights and permissions
About this article
Cite this article
Damasio, A., Carvalho, G. The nature of feelings: evolutionary and neurobiological origins. Nat Rev Neurosci 14, 143–152 (2013). https://doi.org/10.1038/nrn3403
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrn3403